BENEŠ NETWORK (1)

- A possibility to avoid a routing with delays is providing a non blocking topology.
- Beneš network has this property
- It consists of two back-to-back butterflies

BENEŠ NETWORK (2)

- The n-dimensional Beneš network has $2 n+1$ layers, each with 2^{n} nodes.
- The first and last $n+1$ layers in the network form an n dimensional Butterfly (the middle layer is shared).
- Not surprisingly, the Beneš network is very similar to the Butterfly, in terms of both its computational power and its network structure.

BENEŠ NETWORK (4)

BENEŠ NETWORK (3)

- The reason for defining the Beneš network is that it is an excellent example of a rearrangeable network.
- Def. A network with N inputs and N outputs is said to be rearrangeable if for any one-to-one mapping π of the inputs to the outputs (i.e. for any permutation), we can construct edge-disjoint paths in the network linking the i-th input to the $\pi(i)$-th output for $1 \leq i \leq N$.
- In the case of the n-dimensional Beneš network, we can have two inputs for each node at layer 0 and two outputs for each node at layer $2 n$, and still connect every permutation of inputs to outputs with edge-disjoint paths.

BENES NETWORK (5)

It seems extraordinary that we can find edge-disjoint paths for any permutation. Nevertheless, the result is true, and it is even fairly easy to prove, as we show in the following:
Th. Given any one-to-one mapping n of 2^{n+1} inputs to 2^{n+1} outputs on an n-dimensional Beneš network, there is a set of edge-disjoint paths from the inputs to the outputs connecting input i to output Π (i) for $1 \leq i \leq 2^{n+1}$.
Proof. ...

BENEŠ NETWORK (7)

PROOF OF THE REARRNGEEBBLITY OF THE BENES NETWORK (CNTD)

BENEŠ NETWORK (6)

Prooit of the rearravgeabihfy of the benes network (cNid)

Proof. By induction on n.

- Basis: if $n=0$, the Beneš network consists of a single node (i.e. a single 2×2 switch) and the result is obvious.
- Induction: assume that the result is true for an (n-1)dimensional Beneš network
- Key observation: the middle $2 n-1$ layers of an ndimensional Beneš network comprise two ($n-1$)dimensional Beneš networks

BENEŠ NETWORK (8)

PRooi of the rearravgeabilify of the benes network (cNTD)

- Hence, for each path, it will be sufficient to decide whether it is to be routed through the upper subBeneš network or through the lower sub-Beneš network.

BENEŠ NETWORK (9)

PROOF OF THE REARRAMGEABDITYY OF THE bENES NETWORK (CNTD)

- The only constraints we have to consider to decide whether paths use the upper or lower subnetworks are that paths from inputs $2 i-1$ and $2 i$ must use different subnetworks for $1 \leq i \leq 2 n$, and that paths to outputs $2 i-1$ and $2 i$ must use different sub-networks.

BENES NETWORK (11)

PROOF OR THE REARRAMGEABLLITY OF THE BENES NETWORK (CNTD)

And so on...

BENEŠ NETWORK (10)

PROOI OF THE REARRANGEABHITYY OF THE BENES NETWORK (CNID)

©

BENES NETWORK (12)

PROOI OF THE REARRANGEABLITYY OF THE BENES NETWORY (CNTD)

Summary of the steps:

- We start by routing the first path through the upper subnetwork.
- We next satisfy the constraint generated at the output by routing the corresponding path through the lower subnetwork.
- We keep on going back and forth through the network, satisfying constraints at the inputs by routing through the upper sub-network and satisfying constraints at the outputs by routing through the lower sub-network.

BENEŠ NETWORK (13)

PROOI OT THE REARRAMGEABILTTY OF THE BENES NETWORK (CNTD)

- Eventually, we will close the loop by routing a path through the lower sub-network (in response to an output constraint) that shares an input switch with the first path that was routed.
- If any additional paths needs to be routed, we con- tinue as before, starting over again with an arbitrary unrouted path.
- In this way, all paths can be assigned to the upper or lower sub-networks without conflict.

BENES NETWORK (15)

- In the case that each layer 0 node of the n-dimensional Beneš network has just one input and each layer $2 n$ node has just one output, then the paths from the inputs to the outputs can be constructed so as to be nodedisjoint (instead of only edge-disjoint):

BENEŠ NETWORK (14)

PROOI OF THE REARRAMGEABLLITY OF THE BENES NETWORK (CNTD)

- This algorithm is called looping algorithm.
- It is easy to see that all paths can be assigned to the upper or lower sub-networks without conflict:
- By construction, if we start going to the upper subnetwork, we will arrive to the corresponding output in the upper sub-network and we will leave it to the lower sub-network, and so on.
- For parity reason, when a loop is close, we will correctly arrive from the right sub-network.
- The remainder of the path routing and switch setting is handled by induction in the sub-networks.

BENES NETWORK (16)

- Th. Given any one-to-one mapping of π of 2^{n} inputs to 2^{n} outputs in an n-dim. Beneš network, there is a set of nodedisjoint paths from the inputs to the outputs connecting input i to output Π (i) for $1 \leq i \leq 2^{\text {n. }}$
- Proof. Identical to the previous one, but the paths needing to use different Beneš networks are now i and $i+2^{n-1}, 1 \leq i \leq 2^{n-1}$ (and not $2 i-1$ and $2 i$).

BENEŠ NETWORK (17)

- Exemple: $n=2$, hence $2^{n-1}=2$

BENEŠ NETWORK (18)

Drawbacks of the looping algorithms (both versions):

- we do not know how to set the switches on-line. In other words, each switch needs to be told what to do by a global control that has knowledge of the permutation being routed
- There exist numerous methods for overcoming this difficulty (not studied here).
- every time a new permutation must be routed, $\boldsymbol{\Theta}(N \log N)$ time is necessary to re-set switches.

