PACKET-ROUTING HLGORTYHMS ON INTERCONNECTION TOPOLOGIES

PACKET-ROUTING ON INTERCONNECTION TOPOLOCIES (2)

Many different types of routing models.
Here, we will focus on the store-and-forward model (also known as the packet-switching model):

- Each packet is maintained as an entity that is passed from node to node as it moves through the network
- A single packet can cross each edge during each step of the routing
- Depending on the algorithm, we may or may not allow packets to pile up in queues located at each node. When queues are allowed: effort to keep them short.

PACKET-ROUTING ON INTERCONNECTION TOPOLOGIES (1)

- Up to now, in the routing problem we have considered the network as a graph unknown to the nodes and variable in time (faults, varying traffic, etc.)
- Nevertheless, when the network is an interconnection topology (and connects, for example, processors), it is known and fixed in time. Furthermore, efficiency is a primary issue.
- Solutions having stronger properties than the simple shortest path algorithms are required.

PACKET-ROUTING ON INTERCONNECTION TOPOLOGIES (3)

- Global controller to precompute routing paths not allowed
- Problem handled using only local control
- A routing problem is called one-to-one if at most one packet must be addressed to every node and each packet has a different destination.
- In contrast, one-to-many and many-to-one

BUTTERFLY NETWORK (1)

Def. Let $N=2^{n}$ (hence $n=\log N$); the n-dimensional Butterfly is a layered graph with:

- $N(n+1)$ nodes $\left(n+1\right.$ layers with 2^{n} nodes each) and
- $2 N n$ edges.

Nodes:

nodes correspond to pairs (w, i), where:

- i is the layer of the node
- W is an n-bit binary number that denotes the row of the node.

BUTTERFLY NETWORK (2)

def. of n-dimensional butterfly (cntd)

Edges:

Two nodes (w, i) e (w^{\prime}, i^{\prime}) are linked by an edge iff $i=i+1$ and either:

- $W^{\prime}=W^{\prime}$ (straight edge) or
$\circ W$ and w^{\prime} differ in precisely the i th bit (cross edge)

BUTTERFLY NETWORK (4)

The butterfly has a simple recursive structure:
one n-dim. butterfly contains two (n-1)-dim. butterflies as subgraphs (just remove either the layer 0 nodes or the layer n nodes of the n-dim. butterfly to get two (n-1)-dimensional butterflies).

BUTTERFLY NETWORK (5)

For each pair of rows w and w^{\prime}, there exists a unique path of length n (known as greedy path) from $(w, 0)$ to (w^{\prime}, n);
this path passes through each layer exactly once, using a cross-edge from layer i to layer $i+1(i=0, \ldots, n)$ iff W and w^{\prime} differ in the i-th bit and using a straight-edge otherwise.

ROUTING ON THE BUTTERFLY (1)

Problem of routing N packets from layer 0 to layer n in an n-dimensional butterfly:

- Each node ($u, 0$) on layer 0 of the butterfly contains a packet that is destined for node $(\pi(u), n)$ on layer n, where $\pi:[1, N] \rightarrow[1, N]$ is a permutation.
- In the greedy routing algorithm, each packet is constrained to follow its greedy path.
- When there is only one packet to route, the greedy algorithm performs very well.
- Trouble can arise when many packets have to be routed in parallel...

ROUTING ON THE BUTTERFLY (3)

- Assume for simplicity that n is odd (but similar results hold when n is even), and consider edge

$$
e=((00 \ldots 0,(n-1) / 2),(00 \ldots 0,(n+1) / 2))
$$

- Node (00...0, (n-1)/2) is the root of a complete binary tree extending to the left having $2^{(n-1) / 2}$ leaves
- Analogously to the right

ROUTING ON THE BUTTERFLY (4)

- ...
- The permutation can be such that each greedy path from a leaf of the left tree arrives to a leaf of the right tree traverses e
- There are $2^{(n-1) / 2}=\sqrt{ } N / 2$ possible such paths, and thus $2^{(n-1) / 2}=\sqrt{ } N / 2$ packets may traverse e. So at least one of them may be delayed by $\sqrt{ } N / 2-1$ steps.
- It takes at least $n=\log N$ steps to traverse the whole networks and to route a packet to its destination.
- In this case, the greedy algorithm can take $\sqrt{ } N / 2+\log N-1$ steps to route a permutation.
- In general...

ROUTING ON THE BUTTERFLY (6)

- ...
- Any packet crossing e can be delayed by at most the other $n_{i}-1$ packets that want to cross the edge.
- As this packet traverses layers $1,2, \ldots, n$, the total

ROUTING ON THE BUTTERFLY (5)

Th. Given any routing problem on an n-dimensional butterfly for which at most one packet starts at each layer 0 node and at most one packet is destined for each layer n node, the greedy algorithm will route all the packets to their destinations in $O(\sqrt{ } N)$ steps.
Proof. For simplicity, assume that n is odd (but the case n even is similar).

- Let e be any edge in layer $i, 0<i \leq n$, and define n_{i} to be the number of greedy paths that traverse e
- $n_{i} \leq 2^{i-1}$ (left tree) and, similarly, $n_{i} \leq 2^{n-i}$ (right tree) so $n_{i} \leq \min \left\{2^{i-1}, 2^{n-i}\right\}$

ROUTING ON THE BUTTERFLY (7)

- Despite the fact that the greedy routing algorithm performs poorly in the worst case, the greedy algorithm is very useful in practice.
- For many useful classes of permutations, the greedy algorithm runs in n steps, which is optimal and, for most permutations, the greedy algorithm runs in n $+o(n)$ steps.
- As a consequence, the greedy algorithm is widely used in practice.

