
1

THE ROUTING PROBLEM
I.E.
THE SHORTEST PATH PROBLEM AND

THE LEAST COST PATH PROBLEM
Prof. Tiziana Calamoneri

Network Algorithms

A.A. 2019/20

THE PROBLEM
(already studied!)

3

Given a network:

§ When packets are sent from a computer to another one
through the network, each computer has to route data
on a path passing through intermediate computers.

§ This is the very general routing problem.

4

§ Case 1. Not adaptive routing
A routing algorithm could try to send packets through a
network so that the length of the used path is
minimized. Such length can be measured in terms of
number of hops between pairs of computers.

If the network is modeled as a graph (node =
computer and edge = link), the problem reduces to
the shortest path problem between two nodes.

5

§ Case 2. Adaptive Routing
It takes into account the traffic conditions: in order to
decide next step, the traffic is estimated, so the packet
is sent toward the zones of the network not affected by
traffic.

If the network is modeled by an edge-weighted
graph (node = computer, edge = link, weight =
dynamic value proportional to the traffic on the
connection), the problem reduces to the (dynamic)
least cost path problem.

6

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§ Non adaptive routing:

§ Good results with consistent topology and traffic
§ Poor performance if traffic volume or topologies

change over time
§ Information about the entire network has to be

available
§ Each packet is routed through an outgoing edge in a

fixed way
§ Routing tables are used

7

cases 1 and 2. Adaptive and non adaptive routings (cntd)

§ Adaptive routing:

§ Decisions are based on current network state
§ Packets follow dynamically computed routes
§ Routers are able to communicate
§ Rather often re-calculations are necessary
§ Each router creates its own routing table

8

§ Case 3. Routing with faults
When the network is modeled as a graph, the length
(edge-weight) of an edge may also represent the
probability of its failing (used, for instance, in networks
of thelephone lines, or broadcasting systems in
computer networks or in transportation routes). In all
these cases, one is looking for the route having the
highest probability not to fail.

More precisely…

9

case 3. Routing with faults (cntd)

§ Let p(e) be the probability that edge e does not fail.
Under the -not always realistic- assumption that failings
of edges occur independently of each other,
p(e1)�p(e2)�…�p(ek) gives the probability that the path
P=(e1,e2,…,ek) can be used without any faults.

§ We want to maximize this probability over all possible
paths with starting point a and arrival point b…

10

case 3. Routing with faults (cntd)

§ Note. Since function log is monotonic increasing, the
maximum of the product p(e1)�p(e2)�…�p(ek) is reached
iff the logarithm of the product is maximum, i.e. iff:

log p(e1)+log p(e2)+…+ log p(ek) is maximum.
§ log p(e) ≤ 0 for each e because p(e) ≤ 1.
§ Define w(e)=-log p(e), then w(e)≥0 for all e; furthermore,

we have to find a path from a to b for which
w(e1)+w(e2)+…+w(ek) becomes minimum.

§ Thus, our problem is reduced again to the
least cost path problem.

11

Why does routing matter?

§ End-to-end performance
§ Quality of the path affects user performance (propagation

delay, throughput, packet loss)

§ Use of network resources
§ Balance of the traffic over the routers and the links
§ Avoidance of congestion by directing traffic to lightly-

loaded links

§ Transition
§ The periodical changes of the routing tables reduce the

incidence of faults and increase load balancing
§ Limiting packet loss and delay during changes 12

13

THE SHORTEST PATH PROBLEM
AND THE LEAST COST PATH
PROBLEM

14

§ Let G=(V,E) be a graph; let w(e) be the length of each
edge e.

§ Many versions of the shortest path problem:
¢ All to all
¢ One to one
¢ One to all
¢ All to one

§ Lengths can be:
¢ All equal (unit length)
¢ Non negative
¢ Possibly negative but without negative cycles
¢ Creating possible negative cycles

15

§ Algorithm designed by Moore [‘59] for the one-to-all
shortest path problem and unit lenghts:
… Breadth First Search (BFS) …

§ TH. G is connected iff at the end of the BFS starting from
node a, dist(a,b) < ∞ for each node b, where dist is the
distance in terms of number of edges.

§ Note. This claim is false if G is a digraph (indeed the
notion of connected graph does not exist on digraphs:
strong and weak connection…)

Let G=(V,E) be a graph or a digraph and let w: EèIR be an
edge-weight function.

§ (G,w) is called network.

§ w(e) is called length (though including meanings such
as cost, capacity, weight, probability, …)

§ For each path P=(e1, e2, …, ek) (if G is a digraph, P is a
dipath), the length of P is defined as
w(P)=w(e1)+w(e2)+ …+w(ek).

§ Note. If w(e)=1 for each edge, the least cost path
problem reduces to the shortest path problem.

16

Given two nodes a and b, the distance d(a,b) is defined as
the minimum, over all the paths P connecting a and b, of
w(P).

Two problems arise:
§ PR.1: b could be unreachable from a
§ SOL.: define d(a,b)=∞ if b is unreachable from a

§ PR.2: the minimum could not exist (cycles of negative
length)

§ SOL.: only networks without cycles of negative length
are feasible

17a b1 -3 1

1 1

Negative lengths may occur!

Example:

§ A ship travels from port a to port b, where the route (and
possible intermediary ports) may be chosen freely.

§ The length w(x,y) signifies the profit gained by going
from x to y.

§ For some edges, the ship might have to travel empty so
that w(e) is negative for these edges: the profit is actually
a loss.

§ Replacing w(e) by –w(e) for all e in this network, the
shortest path represents the route which yields the
largest possible profit.

18

§ In general, when w represents a gain, it seems natural to
replace w(e) by –w(e) and look for least cost paths, but
this could introduce cycles of negative weigth.

§ There exist good algorithms that find minimum weight
paths even when G contains cycles of negative weight.

19

In any solution:

§ Cycles having negative length cannot exist (we
avoided them by hypthesis)

§ Cycles having positive length cannot exist (by
contradiction: if one of them is in the solution, the new
solution without it has a lower cost)

§ Cycles having null length do not exist without loss of
generality: if one of them is in the solution, the new
solution without it has the same cost and so is
feasible, too

§ So: our solution does not contain any cycles and
hence it passes through at most n-1 edges. 20

§ In order to univocally determine a path from a to b it
is enough, for each node in such path, starting from b
and coming back, to store its predecessor on the
path.

§ To do it: for each node v in G define a pointer pt(v),
initially equal to NULL; at the end, it points at the
predecessor of v on the path.

21

a

b

a

b

(already studied!) 22

§ G=(V,E) directed with edge-weights possibly negative

§ It solves the problem of the shortest path from single
source, hence it outputs the distances from the (single)
source to each node

§ It assumes that G does not contain any cycles of
negative length

§ It is based on the principle of relaxation

§ Time complexity: O(nm)

23

§ G=(V,E) directed with non negative edge-weights

§ It solves the problem of the shortest path from single
source, hence it outputs the distances from the (single)
source to each node

§ It is based on the principle of relaxation

§ Time complexity: either O(n2) or O(m log n)

§ The time complexity of the Dijkstra Algorithm is better
than the time complexity of the Bellman-Ford
Algorithm, but it is less versatile, as it requires not
negative edge weight edges.

24

§ G=(V,E) directed with edge-weights possibly negative

§ It solves the problem of the all pairs shortest path,
hence it outputs a matrix with the distances from each
node to each other node

§ Repeatedly applying the algs treated before, varying
the source over all nodes in V :
§ Bellman-Ford: n O(nm)=O(n2m)
§ Dijkstra: n O(n2) =O(n3) o n O(m log n)=O(mn log n)

§ Time complexity: O(n3) and negative edge weights are
allowed

25

§ For each node v, let d(v) be a function representing an
estimate of the weight of the shortest path from s to v.

§ At the beginning d(v)=∞ for each v

§ One relaxation step is performed as follows:
§ Given an edge (u,v)
§ If d(u)+w(u,v)<d(v)

d(v)=d(u)+w(u,w)
pt(v)=u

§ Time complexity of one relaxation step: O(1)

26

§ Assume that G does not contain any cycles of
negative length
For each v initialize d(v) and p(v)
For i=1 to n-1 do

For each (u,v) relax v w.r.t. (u,v)

§ Time Complexity: O(nm)

27

O(n)+
|n-1 times

| mO(1)

28

0

∞

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

i=1

0

∞

∞

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

∞

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

∞

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

1

2

3

4

5

6

7

8

9

10

x: order of the edges
: visited edges
: predecessor

i=2

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

6

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

2

7

4

8

6

7

1

2

8
-3

-4
7

-2
5

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

1

2

3

4

5

6

7

8

9

10
0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

-

i=3

x: order of the edges
: visited edges
: predecessor

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

29

…

30

0

2

7

4

2

6

7

1

2

8
-3

-4
7

-2
5

-

b

a

c

d e

(Let us consider predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,d) as the shortest path is a-d-c-b
c (a,d) as the shortest path is a-d-c
d (a,d)
e (a,d) as the shortest path is a-d-c-b-e

Bellman-Ford Algorithm is used for Distance Vector
routing, an iterative, asynchronous and distributed
protocol:

§ c(x,v)=cost for (directed) link from x to v
§ Dx(y)=estimate of least cost from x to y; x mantains distance

vector Dx=[Dx(y) for each y neighbor of x]; for each
neighbor y, x mantains also Dy

§ Each node x periodically sends Dx to its neighbors
§ Neighbors update their own distance vector:

Dx(y)=min{c(x,v)+Dv(y)}
§ x notifies neighbors when its distance vector changes
§ Over the time, Dx converges

§ An exemple: Routing Information Protocol (RIP)
31 32

¢ G=(V,E) directed with non negative edge-weights
¢ It partitions the nodes of G: nodes whose shortest

path from s has already been found (S) and all the
other nodes (V-S)

¢ Greedy algorithm

¢ At each step, let u be the node in V-S with minimum
value of d; add u to S and relax all the edges
outcoming from u

¢ Keep V-S in a priority queue (e.g. min heap)

33

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

The time
complexity
depends on the
data structure used
to implement Q:

Queue: O(n2)
Heap: O(m log n)
Fibonacci Heap:
O(m+n log n)

34

¢ For each v initialize d(v) and pt(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

Using heap:
O(n)
O(1)
O(n)

n times
| O(log n)
|O(1)

| O(deg u) times

| | O(1)
| |O(log n)

tot.

O(n log n+ m log n)=
O(m log n)

35

0

∞

∞

∞

∞

6

7

1

2

8
8

1
7

2
5

0

6

7

∞

∞

6

7

1

2

8
8

1
7

2
9

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

5

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

: visited edges
: predecessor
: nodes in S
: nodes in V-S

36

(Let us consider drawings of predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,b)
c (a,b) as the shortest path is a-b-e-c
d (a,d)
e (a,b) as the shortest path is a-b-e

0

6

7

1

7

6

7

1

2

8
8

1
7

2
9

4

a

e

cb

d

Dijkstra Algorithm is used for dynamic routing protocols.

§ Each router:
§ Keeps trace of its incident links

§ Whether the link is up or down
§ The cost on the link (varying in time)

§ Broadcasts the link state (flooding)
§ So, every router has a complete view of the graph

§ Runs Dijkstra Algorithm
§ To compute the shortest paths…
§ …and construct the forwarding table

§ An exemple: Open Shortest Path First (OSPF) used in the
networks with Internet Protocol (IP) 37 38

Sometimes, it is not enough to calculate the distances
w.r.t. a certain node s: we need to know the distances
between all pairs of nodes.
§ G=(V,E) directed with any edge-weight.
§ Algorithm for the all-to-all shortest path problem
§ Trick 1: all edges are in; the non-existing ones have

w=∞
§ Trick 2: in order to go from i to j you can either go

directly or passing through a third node k
§ dynamic programming

39

Algorithm:
§ For each node i, initialize dist(i,i)=0
§ For each edge (i,j) initialize dist(i,j)=w(i,j)
§ For each node k

§ For each node i
§ For each node j

dist(i,j)=min{dist(i,j), dist(i,k)+dist(k,j)}

§ Time Complexity O(n3)

O(n)
O(n2)
n times
|n times
|| n times
||| O(1)

40

Difference Constraints:
¢ Let be given some tasks with precedence constraints and

running lengths, and an unlimited (or limited by
n=number of tasks) number of processors:
¢ Each task i has:

• Starting time si

• Time to complete bi>0
• Constraint sj+bj≤si if task i can be started after that

task j has been completed
¢ First task can start at time 0
¢ When can we finish last task?

41

This is the Shortest Path Problem on directed acyclic
graphs:

¢ Define a graph having a node for each task
¢ Insert a dummy node v0 (that models time 0)
¢ Insert an arc (v0,i) for each task node i and let 0 be its

weight
¢ For each precedence constraint sj+bj≤si insert an arc (j,i)

with weight bj

¢ Optimal Solution: start each task i at time equal to the
length Li of the longest path from v0 to i. All the tasks are
surely completed within time

maxi (Li+bi)

42

To transform to the shortest path problem, multiply all
lengths and times by -1:

b1=2
b2=3
b3=1
b4=2
s3+b3≤s2

s3+b3≤s1

v0

1

3

2

4

1

1

3 1

2

4

