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¢ UAVs are flying vehicles able to 
autonomously decide their route 
(different from drones, that are 
remotely piloted)

¢ Historically, used in the military, 
mainly deployed in hostile territory 
to reduce pilot losses
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¢ Now, new applications in civilian 
and commercial domains: 

� weather monitoring, 

� forest fire detection, 

� traffic control, 

� emergency search and rescue 

4



5

¢ Let be given an AoI whose map is known 

¢ we have a fleet of m UAVs leaving from a safe 
location (v0) each with a battery endurance B

¢ in the AoI there is a set S={v1, …, vn} of sites that 
must be examined (e.g.  crumbled buildings after a 
hearthquacke)

¢ each site vi needs a time ti to be inspected 
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¢ each UAV must periodically go back to vo in order 
to recharge its battery; this takes time R, typically 
2.5-5 times B

¢ we want to overfly v1, …, vn “as soon as possible” 
in order to collect data and possibly save people

??
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sites v1, …, vn + the depot v0 are the n+1 nodes of G

It is natural to model 
this problem as a graph 
problem:
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there is an edge between each pair of nodes ⇒ Kn+1

It must be possible to go 
from each node to every 
other node, so
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¢ Each UAV has a flying+inspection time bounded by B. 
¢ for each pair of sites (vi, vj) we assume their distance 

(stored as an edge weight function w(ui, uj)) as the 
time a UAV needs to go from ui to uj.
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¢ each UAV is characterized by a different color
¢ each UAV flies along a cycle (colored with the UAV 

color) and visits as many sites as it can (w.r.t. its 
battery constraint B), it goes back to the depot to 
recharge its battery (with time R) and it leaves again…

All sites need to be visited in the “shortest time”.

??
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What does it mean “shortest time”?

Different possibilities for the optimization function:

¢ Minimize the Total completion Time

¢ Minimize the Average Waiting Time

¢ Minimize the number of cycles

¢ … 

¢ Note: Minimize the Overall Energy Consumption or 
the Total Traversed Distance has no meaning…
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Similarities with many problems:

mTSP  multiple Traveling Salesperson
¢ n cities, one depot, a cost metric
¢ m salespersons must overall cover the cities
¢  objective: determine one tour for each 

salesperson minimizing the total length 
  no visiting times nor battery constraint
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Similarities with many problems (cntd):

kTRPR k-Traveling Repairperson Problem with 
Repairtimes
¢ n customers, each with a repairtime, one depot
¢ k repairpersons to visit all the n customers 

Calling the latency of a site the time elapsed before 
that site is visited by a repairperson:
¢  objective: determine k cycles…
 minimizing the sum of all latencies
¢ no battery constraint 
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Similarities with many problems (cntd):

mTRPD  multiple Traveling Repairperson Problem with 
Distance Constraints
¢ n customers, one depot
¢ m repairpersons to visit all the n customers 
¢ not allowed to travel a distance 

longer than a predetermined limit; 
¢ Objective: determining m cycles…
 minimizing the total waiting time 
¢ No repairtimes and it is not trivial to extend 

a solution by just adding them
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Similarities with many problems (cntd):

variants of VRP  vehicle routing problem
¢ VRP is a generic name given to a whole class of 

problems concerning the optimal design of routes 
to be used by a fleet of vehicles to serve a set of 
customers 

¢ There is usually a constraint on the number of 
visited customers per vehicle
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Similarities with many problems (cntd):

TOP  team orienteering problem
¢ n sites each with a profit, one depot, m vehicles, 

with a limited total duration for their routes
¢ Objective: maximize the total profit
¢ equivalent to the first round of our problem 
¢ Objective: maximize the no. of covered sites 

(if the profits are all the same)
¢ Repeat many times until all sites have been 

covered does not seem a good idea…
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Similarities with many problems (cntd):

NOTE: From all these similarities we deduce that:
1.  the problem is NP-hard, and 
2. we cannot exploit any known result, among the 

described ones…
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[C. & Tavernelli’19]

¢ V set of locations

¢ A cycle cover C = {C1,...,Ck} forV is a set of cycles 
s.t. each location of V belongs to at least one cycle.

¢ Given a fixed value x≥0, an x-bounded cycle cover is 
a cycle cover in which each cycle C has cost(C)≤x. 

¢ A rooted cycle C is a cycle where v0∊ C. 
¢ A rooted cycle cover is a cycle cover whose cycles 

are rooted cycles. 
¢ The completion time of a (rooted) cycle cover C  is 

   ct(C) = max cost(C) on all C ∊ C. 
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¢ RMCCP Minimum Bounded Rooted Cycle Cover 
Problem requires to find a bounded rooted cycle 
cover of minimum cardinality. 

¢ Definition. RMCCP:
Input: ⟨G,v0,d,x⟩ where G = (V,E) is a graph, v0∊ V is 
called root, d is a distance defined on E and x is a 
positive number
Output: an x-bounded rooted cycle cover of 
minimum cardinality, if it exists.
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¢ RMCCP has been proved to be approximable first 
within O(log x) [Nagarajan & Ravi ‘12] and then within 
%( !"# $

!"# !"# $) [Friggstad & Swamy ‘14].

¢ RMCCP and our problem are tightly connected:
¢ …
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¢ Thm. If RMCCP can be approximated within (, our 
problem can be approximated within 5 ( +1.

On the other hand:
¢ Thm. If our problem can be approximated within ), 

then RMCCP can be approximated within 2 ) +1.
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¢ In other words, our problem inherits the hardness 
of RMCCP. 
¢ Notice that whether RMCCP admits a constant 
approximation algorithm or not is one of the major 
open problems in this area.
¢  Note. although RMCCP and our problem are so 
tightly connected, the first one minimizes the 
number of cycles, while the second one the 
completion time. 
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[C., Corò, Mancini ’23]

Since we cannot exploit similar problems, we have to 
study it as a new problem:
We define a new problem: MDMT-VRP-TCT Multi-
Depot Multi-Trip Vehicle Routing Problem with Total 
Completion Times minimization 

It perfectly fits the application:
¢ many depots for many independent rescue teams
¢ every UAV can perform many trips starting from 

one among many depots
¢ Objective: minimize the total completion time
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Note 1. In the multi-depot context, minimizing the 
completion time and the total traversed distance is 
not the same:

(a)                                 (b)                         (c)

Figure 1: (a) An instance of our problem; (b) a solution minimizing the completion time;

(c) a solution minimizing the traveling distance.

We wonder if this is a special artificial example or if, instead, it hides a
more general behaviour. To this aim, we experimentally compare the results
output by the exact model in the two cases in which either we exploit the
objective function (of) or, instead, we minimize the total traveling distance.
In Table 1 we show the results of this experiment: we run our model on 20
random instances with 20 target nodes whose service times are between 5 and
8 minutes, 2 depots, and a single UAV per depot, with a battery capacity
of 30 and 50 minutes, respectively; on the left, the objective is minimizing
the completion time while the traveling distance is computed a posteriori;
vice-versa, on the right, we aimed at minimizing the traveling distance and
computed as a consequence the completion time. It is not di�cult to see that,
although the two parameters are clearly not uncorrelated, there is neither a
clear dependence.

ct td # trips ct td # trips
256,10 351,44 11 267,99 321,72 8
191,90 380,01 11 269,99 344,87 9
212,14 423,51 13 304,29 386,05 10
192,66 383,70 11 291,92 353,20 10
221,69 371,99 13 277,81 314,14 8
222,76 405,43 14 280,55 330,51 8
272,82 457,70 14 330,37 358,76 8
139,25 271,77 8 237,47 258,81 6
228,02 421,47 13 312,74 351,03 9
212,80 407,27 13 276,77 331,11 8
202,54 346,08 12 260,95 286,58 7
175,71 351,40 11 247,19 272,67 7
179,63 359,00 11 237,49 317,70 8
213,47 416,99 13 336,48 358,57 8
203,52 395,94 12 275,57 360,23 9
210,33 418,91 13 343,80 372,99 8
296,74 436,70 13 332,81 367,22 9
171,45 341,01 11 234,17 298,61 8
221,01 431,80 14 285,11 357,45 9
204,73 397,40 12 272,90 331,85 8

average 211,46 397,40 12,15 283,82 333,70 8,25

Table 1: Results on instances with 20 target nodes, where the completion time (left) and

traversed distance (right) are minimized.

9

completion 
time 
minimization

total 
traversed 
distance 
minimization
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Note 2. In the multi-depot context, the solution is 
not correct if we partition the area into as many 
portions as the number of depots, so that the target 
nodes falling in a certain portion are automatically 
assigned to the closest depot:

(a) (b)

Figure 2: (a) An optimal solution on a sample instance; (b) a solution where a di↵erent

quadrant is exclusively assigned to each UAV.

Figure 2 shows the behaviour of a sample instance: in Figure 2(a) (where
all UAVs can fly over every target) the trips are assigned in a balanced fash-
ion; on the contrary, in Figure 2(b) (where a subarea is exclusively assigned
to each UAV), the UAV with base at the lower-left vertex is scarcely used
(only one trip is assigned to it); vice-versa, 4 trips are assigned to the UAV
with base at the upper-left vertex, so lengthening the completion time; note
that the UAV with base on the lower-right vertex overflies exactly the same
target nodes in both the scenarios, as they are su�ciently close to it and are
anyway the best choice.

4. A model based matheuristic framework

The main idea under the mathematical model consists in generating all
possible feasible sequences and associating them to the set of their compatible
UAVs. When the number of feasible trips is too large to be handled, the
mathematical model becomes intractable. If, for instance, target nodes are
very close to each other so that a huge number of feasible sequences are
produced, or batteries are large so that several target nodes can be visited
in a single sequence, even small instances may become di�cult to handle
exactly.

To overcome this issue, and be able to address larger instances, we derive
from our model a heuristic approach, in which we generate only a subset of
the feasible sequences, K̃ to be passed to the model. It is clear that the choice
of the sequences can dramatically change the performance of the heuristic.
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optimal solutions: Completion Time: (a) 41.28; (b) 65.41
                      (a) more balanced than (b)
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MDMT-VRP-TCT can be formulated as a MILP.
Def. sequence = ordered set k of target nodes.
     duration dk of sequence k = sum of all traveling
     times between consecutive target nodes in k +
     the service times of all the target nodes in k.
Def. trip = A sequence k assigned to a UAV u with
     the addition of its depot ou 
     duration dku of a trip k+ou = duration of k +
     the traveling distance between ou and the first
     node of k + the traveling distance between
     the last node of k and lk
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Def. A sequence k is compatible with a UAV u if the 
duration of the associated trip is upper bounded
by B.
The main idea consists in generating all possible 
sequences that are compatible with at least one UAV 
and choose the best solution…
too large number…
Matheuristic: we generate only a subset of the 
feasible cycles to be passed to the model. 
Note: the problem of determining which sequences to 
generate assumes a crucial importance…



§ introducing priorities (hospitals, schools 
should be served first) [C., Corò, Mancini ‘22]

§ introducing a double budget (battery + 
memory) 
   [Betti Sorbelli, Navarra, Palazzetti, Pinotti, Prencipe ‘22]
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§ introducing cooperation

§ introducing ‘relaxed multi-depot’ (that is, a 
UAV may leave from one depot and come 
back to another one: battery recharge 
constraints…)

§ introducing some “emergency criteria” able 
to dynamically change the UAVs’ behaviour 
(what if an injured person is detected? 
Shall we wait until the UAV is back?)
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