UNMANNED HERIAL VEHICLES (UAVS)

THE PROBLEM

- UAVs are flying vehicles able to autonomously decide their route (different from drones, that are remotely piloted)
- Historically, used in the military, mainly deployed in hostile territory to reduce pilot losses
- Now, new applications in civilian and commercial domains:

- weather monitoring,
- forest fire detection,
- traffic control,
- emergency search and rescue

MONITORING BY UAVS

- Let be given an Aol whose map is known
- we have a fleet of m UAVs leaving from a safe location $\left(v_{0}\right)$ each with a battery B
- in the Aol there is a set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ of sites that must be examined (e.g. crumbled buildings after a hearthquacke)
- each site v_{i} needs a time t_{i} to be inspected
- each UAV must periodically go back to v_{o} in order to recharge its battery; this takes time R, typically 2.5-5 times B
- we want to overfly v_{1}, \ldots, v_{n} "as soon as possible" in order to collect data and possibly save people

THE GRAPH MODEL (1)

THE GRAPH MODEL

there is an edge between each pair of nodes $\Rightarrow K_{n+1}$

It is natural to model this problem as a graph problem:

- sites $v_{1}, \ldots, v_{n}+$ the depot v_{0} are the $n+1$ nodes of the graph

THE GRAPH MODEL (3)

- Each UAV has a flying+inspection time bounded by B.
- for each pair of sites $\left(v_{i}, v_{j}\right)$ we assume their distance (stored as an edge weight function $w\left(u_{i}, u_{j}\right)$) as the time a UAV needs to go from u_{i} to u_{j}.

THE GRAPH MODEL (4)

- each UAV is characterized by a different color
- each UAV flies along a cycle (colored with the UAV color) and visits as many sites as it can (w.r.t. its battery constraint B), it goes back to the depot to recharge its battery (with time R) and it leaves again...
All sites need to be visited in the "shortest time".

(2)

THE GRAPH MODEL (6)

Similarities with many problems:
mTSP multiple Traveling Salesperson

- m salespersons must overall cover n cities
o objective: minimize the total length of the path - no visiting times nor battery constraint

THE GRAPH MODEL (5)

What does it mean that the sites should be visited in the "shortest time"?

Different possibilities for the optimization function:

- Minimize the Total completion Time
- Minimize the Average Waiting Time
- Minimize the number of cycles
- ...
- Note: Minimize the Overall Energy Consumption (i.e. the total traversed distance) has no meaning...

THE GRAPH MODEL (7)

Similarities with many problems (cntd):
kTRPR k-Traveling Repairperson Problem with Repairtimes

- given n points, construct k cycles, each starting at a common depot and together covering all the n points

Calling the latency of a point the distance traveled (or the time elapsed) before visiting that point:

- objective: minimize the sum of all latencies
- no battery constraint

THE GRAPH MODEL (8)

Similarities with many problems (cntd):
mTRPD multiple Traveling Repairperson Problem with Distance Constraints

- k repairpersons have all together to visit all the n customers
- they are not allowed to traverse a distance longer than a predetermined limit;
- Objective: minimize the total waiting time of all custemers
- No repairtimes and it is not trivial to extend a solution by just adding them
- number of cycles fixed to k

THE GRAPH MODEL (10)

Similarities with many problems (cntd):

TOP team orienteering problem

- equivalent to the first round of our problem
- Objective: maximize the no. of covered sites
- Repeat many times until all sites have been covered does not seem a good idea...
- NOTE: From all these similarities we deduce that the problem is NP-hard and we cannot exploit any known result...

CONNECTION WITH RMCCP (2)

- RMCCP (Minimum Bounded Rooted Cycle Cover Problem) requires to find, if it exists, a bounded rooted cycle cover of minimum cardinality.
- Definition. RMCCP:

Input: $\left\langle G, v_{0}, d, x\right\rangle$ where $G=(V, E)$ is a graph, $v_{0} \in V$ is called root, d is a distance defined on E and x is a positive number Output: an x-bounded rooted cycle cover of minimum cardinality, if it exists.

- RMCCP has been proved to be approximable first within
$O(\log x)\left[\right.$ Nagarajan \& Ravi ' 12] and then within $O\left(\frac{\log x}{\log \log x}\right)$
[Friggstad \& Swamy '14].

CONNECTION WITH RMCCP (4)

- In other words, our problem inherits the hardness of RMCCP. Notice that whether RMCCP admits a constant approximation algorithm or not is one of the major open problems in this area.
- Note. although RMCCP and our problem are so tightly connected, the first one minimizes the number of cycles, while the second one the completion time.

CONNECTION WITH RMCCP (3)

RMCCP and our problem are tightly connected:

- Thm. If RMCCP can be approximated within α, our problem can be approximated within $5 \alpha+1$ (if the optimum solution has completion exceeding b).

On the other hand:

- Thm. If our problem can be approximated within γ, then MCRCCP can be approximated within $2 \gamma+1$.

A NEW GRAPH MODEL (1)
 [C., Corò, Mancini '22]

Since we cannot exploit similar problems, we have to study it as a new problem:
We define a new problem: MDMT-VRP-TCT Multi-Depot MultiTrip Vehicle Routing Problem with Total Completion Times minimization

It perfectly fits the application:
o every UAV can perform many trips starting from one among many depots

- Objective: minimize the total completion time

A NEW GRAPH MODEL (2)

Note 1. In the multi-depot context, minimizing completion time and the total traversed distance is not the same:

(b)

(c)
total
traversed distance minimization

A NEW GRAPH MODEL (3)

Note 2. In the multi-depot context, the solution is not correct if we partition the area into as many portions as the number of depots, so that the target nodes falling in a certain portion are automatically assigned to the closest depot:

(a)

(b)
optimal solution: more balanced

ONGOING PROBLEMS

- introducing cooperation

- introducing some "emergency criteria" able to dynamically change the UAVs' behaviour (what if an injured person is detected? Shall we wait until the UAV is back?)
- introducing a double budget (battery + memory): in progress...

