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¢ UAVs are flying vehicles able to autonomously
decide their route (different from drones, that are 
remotely piloted)

¢ Historically, used in the military, mainly deployed
in hostile territory to reduce pilot losses

¢ Now, new applications in civilian and commercial 
domains: 
� weather monitoring, 

� forest fire detection, 

� traffic control, 

� emergency search and rescue 
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¢ Let be given an AoI whose map is known
¢ we have a fleet of m UAVs leaving from a safe location (v0) 

each with a battery B
¢ in the AoI there is a set S={v1, …, vn} of sites that must be 

examined (e.g. crumbled buildings after a hearthquacke)
¢ each site vi needs a time ti to be inspected

¢ each UAV must periodically go back to vo in order to recharge
its battery; this takes time R, typically 2.5-5 times B

¢ we want to overfly v1, …, vn “as soon as possible” in order to 
collect data and possibly save people

??
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¢ sites v1, …, vn + the depot v0 are the n+1 nodes of the graph

It is natural to model this
problem as a graph problem:
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there is an edge between each pair of nodes ⇒ Kn+1

It must bepossible to go from 
each node to every other
node, so
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¢ Each UAV has a flying+inspection time bounded by B. 
¢ for each pair of sites (vi, vj) we assume their distance

(stored as an edge weight function w(ui, uj)) as the time a 
UAV needs to go from ui to uj.
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¢ each UAV is characterized by a different color
¢ each UAV flies along a cycle (colored with the UAV color) and 

visits as many sites as it can (w.r.t. its battery constraint B), it
goes back to the depot to recharge its battery (with time R) 
and it leaves again…

All sites need to be visited in the “shortest time”.
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What does it mean that the sites should be visited in the 

“shortest time”?

Different possibilities for the optimization function:

¢ Minimize the Total completion Time

¢ Minimize the Average Waiting Time

¢ Minimize the number of cycles

¢ …

¢ Note: Minimize the Overall Energy Consumption (i.e. the 

total traversed distance) has no meaning…
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Similarities with many problems:

mTSP multiple Traveling Salesperson

¢ m salespersons must overall cover n cities

¢ objective: minimize the total length of the path

¢ no visiting times nor battery constraint
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Similarities with many problems (cntd):

kTRPR k-Traveling Repairperson Problem with Repairtimes

¢ given n points, construct k cycles, each starting at a 
common depot and together covering all the n points

Calling the latency of a point the distance traveled (or the time 
elapsed) before visiting that point:

¢ objective: minimize the sum of all latencies

¢ no battery constraint
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Similarities with many problems (cntd):

mTRPD multiple Traveling Repairperson Problem with Distance
Constraints

¢ k repairpersons have all together to visit all the n customers

¢ they are not allowed to traverse a distance longer than a 
predetermined limit; 

¢ Objective: minimize the total waiting time of all custemers

¢ No repairtimes and it is not trivial to extend a solution by just 
adding them

¢ number of cycles fixed to k 14

Similarities with many problems (cntd):

variants of VRP vehicle routing problem

¢ Similar to mTRPD but there is usually a constraint on the 
number of visited customers per vehicle
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Similarities with many problems (cntd):

TOP team orienteering problem

¢ equivalent to the first round of our problem

¢ Objective: maximize the no. of covered sites

¢ Repeat many times until all sites have been covered does
not seem a good idea…

¢ NOTE: From all these similarities we deduce that the 
problem is NP-hard and we cannot exploit any known
result… 16

[C. & Tavernelli’19]

¢ A cycle cover C = {C1,...,Ck} for the site set V is a set of 
cycles s.t. each location of V belongs to at least one cycle.

¢ Given a fixed value x≥0, an x-bounded cycle cover is a cycle
cover in which each cycle C has cost(C)≤x. 

¢ A rooted cycle C is a cycle where v0∊ C. A rooted cycle
cover is a cycle cover whose cycles are rooted cycles. 

¢ The completion time of a (rooted) cycle cover C is
ct(C ) = max cost(C) on all C ∊ C .
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¢ RMCCP (Minimum Bounded Rooted Cycle Cover Problem) 
requires to find, if it exists, a bounded rooted cycle cover of 
minimum cardinality. 

¢ Definition. RMCCP:
Input: ⟨G,v0,d,x⟩ where G = (V,E) is a graph, v0∊ V is called
root, d is a distance defined on E and x is a positive number
Output: an x-bounded rooted cycle cover of minimum 
cardinality, if it exists.

¢ RMCCP has been proved to be approximable first within

O(log x) [Nagarajan & Ravi ‘12] and then within %( !"# $
!"# !"# $)

[Friggstad & Swamy ‘14].
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RMCCP and our problem are tightly connected:

¢ Thm. If RMCCP can be approximated within (, our problem
can be approximated within 5 ( +1 (if the optimum solution
has completion exceeding b).

On the other hand:

¢ Thm. If our problem can be approximated within ), then
MCRCCP can be approximated within 2 ) +1.
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¢ In other words, our problem inherits the hardness of 
RMCCP. Notice that whether RMCCP admits a constant
approximation algorithm or not is one of the major open 
problems in this area.

¢ Note. although RMCCP and our problem are so tightly
connected, the first one minimizes the number of cycles, while
the second one the completion time. 
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[C., Corò, Mancini ’22]

Since we cannot exploit similar problems, we have to study it as
a new problem:

We define a new problem: MDMT-VRP-TCT Multi-Depot Multi-
Trip Vehicle Routing Problem with Total Completion Times 
minimization

It perfectly fits the application:

¢ every UAV can perform many trips starting from one among
many depots

¢ Objective: minimize the total completion time
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Note 1. In the multi-depot context, minimizing completion time 
and the total traversed distance is not the same:

(a)                                 (b)                         (c)

Figure 1: (a) An instance of our problem; (b) a solution minimizing the completion time;

(c) a solution minimizing the traveling distance.

We wonder if this is a special artificial example or if, instead, it hides a
more general behaviour. To this aim, we experimentally compare the results
output by the exact model in the two cases in which either we exploit the
objective function (of) or, instead, we minimize the total traveling distance.
In Table 1 we show the results of this experiment: we run our model on 20
random instances with 20 target nodes whose service times are between 5 and
8 minutes, 2 depots, and a single UAV per depot, with a battery capacity
of 30 and 50 minutes, respectively; on the left, the objective is minimizing
the completion time while the traveling distance is computed a posteriori;
vice-versa, on the right, we aimed at minimizing the traveling distance and
computed as a consequence the completion time. It is not di�cult to see that,
although the two parameters are clearly not uncorrelated, there is neither a
clear dependence.

ct td # trips ct td # trips
256,10 351,44 11 267,99 321,72 8
191,90 380,01 11 269,99 344,87 9
212,14 423,51 13 304,29 386,05 10
192,66 383,70 11 291,92 353,20 10
221,69 371,99 13 277,81 314,14 8
222,76 405,43 14 280,55 330,51 8
272,82 457,70 14 330,37 358,76 8
139,25 271,77 8 237,47 258,81 6
228,02 421,47 13 312,74 351,03 9
212,80 407,27 13 276,77 331,11 8
202,54 346,08 12 260,95 286,58 7
175,71 351,40 11 247,19 272,67 7
179,63 359,00 11 237,49 317,70 8
213,47 416,99 13 336,48 358,57 8
203,52 395,94 12 275,57 360,23 9
210,33 418,91 13 343,80 372,99 8
296,74 436,70 13 332,81 367,22 9
171,45 341,01 11 234,17 298,61 8
221,01 431,80 14 285,11 357,45 9
204,73 397,40 12 272,90 331,85 8

average 211,46 397,40 12,15 283,82 333,70 8,25

Table 1: Results on instances with 20 target nodes, where the completion time (left) and

traversed distance (right) are minimized.
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completion
time 
minimization

total
traversed
distance
minimization
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Note 2. In the multi-depot context, the solution is not correct if
we partition the area into as many portions as the number of 
depots, so that the target nodes falling in a certain portion are 
automatically assigned to the closest depot:

(a) (b)

Figure 2: (a) An optimal solution on a sample instance; (b) a solution where a di↵erent

quadrant is exclusively assigned to each UAV.

Figure 2 shows the behaviour of a sample instance: in Figure 2(a) (where
all UAVs can fly over every target) the trips are assigned in a balanced fash-
ion; on the contrary, in Figure 2(b) (where a subarea is exclusively assigned
to each UAV), the UAV with base at the lower-left vertex is scarcely used
(only one trip is assigned to it); vice-versa, 4 trips are assigned to the UAV
with base at the upper-left vertex, so lengthening the completion time; note
that the UAV with base on the lower-right vertex overflies exactly the same
target nodes in both the scenarios, as they are su�ciently close to it and are
anyway the best choice.

4. A model based matheuristic framework

The main idea under the mathematical model consists in generating all
possible feasible sequences and associating them to the set of their compatible
UAVs. When the number of feasible trips is too large to be handled, the
mathematical model becomes intractable. If, for instance, target nodes are
very close to each other so that a huge number of feasible sequences are
produced, or batteries are large so that several target nodes can be visited
in a single sequence, even small instances may become di�cult to handle
exactly.

To overcome this issue, and be able to address larger instances, we derive
from our model a heuristic approach, in which we generate only a subset of
the feasible sequences, K̃ to be passed to the model. It is clear that the choice
of the sequences can dramatically change the performance of the heuristic.
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optimal solution: more balanced

23

MDMT-VRP-TCT can be formulated as a MILP.

The main idea consists in generating all possible cycles (not
exactly, but…). When their number is too large to be handled, 
the model becomes intractable, even for small instances…

Matheuristic: we generate only a subset of the feasible cycles to 
be passed to the model. It is clear that the choice of the 
sequences can dramatically change the performance of the 
heuristic. Therefore, the problem of determining which
sequences to generate assumes crucial importance…

§ introducing cooperation

§ introducing some “emergency criteria” able to 
dynamically change the UAVs’ behaviour (what if an 
injured person is detected? Shall we wait until the 
UAV is back?)

§ introducing a double budget (battery + memory): in 
progress…

§ …
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