446 15 A Hard Problem: Hwo TSP

In general, we will not end up with L(w) = w(TSP): it is quite possible that no
choice of p yields a minimal s-tree which is already a tour; an example for this
situation can be found in [HeKa70]. But the lower bound for w(TSP) given by
(L) is particularly strong: the values of L(w) are on average more than 99%
of w(TSP) according to [VoJo82]. An interesting theoretical examination of
the Held-Karp technique can be found in [ShWi90].

Of course, solving (L) is a considerably more involved problem than the
original s-tree relaxation. There are various approaches to this problem; the
vectors p are called subgradients in this context. These subgradients can be
used for solving (L) recursively; this yields a method which is guaranteed to
converge to L(w) (for an appropriate choice of the step widths ¢). Unfortu-
nately, one cannot predict how many steps will be required, so that the process
is often terminated in practice as soon as the improvement between successive
values becomes rather small.

The problem (L) is a special case of a much more general method which is
used quite often for integer linear programming problems: Lagrange relazation;
we refer to [Sha79] and [Fis81]. The approach via subgradient optimization is
only one of several ways to solve Lagrange relaxations; it is described in detail
(together with other methods) in [Sho85]; see also [HeWC74].

Appropriate relaxations are very important for finding the optimal so-
lution of a TSP, because they form an essential part of branch-and-bound
techniques; we will present an example for such a method in Section 15.8. We
refer the reader to [VoJo82] and to [LaLRS85, Chapter 10] for more detailed
information. Further methods for determining lower bounds can be found, for
example, in [CaFT89].

15.4 Approximation algorithms

The preceding two sections treated the problem of finding lower bounds on
the length of an optimal tour, so it is now natural to ask for upper bounds.
It would be nice to have an algorithm (of small complexity, if possible) for
constructing a tour which always gives a provably good approximation to the
optimal solution. We need a definition to make this idea more precise, which
generalizes the approach we took when we studied the greedy algorithm as an
approximation method in Section 5.4.

Let P be an optimization problem, and let A be an algorithm which cal-
culates a feasible — though not necessarily optimal — solution for any given
instance I of P. We denote the weights of an optimal solution and of the
solution constructed by A by w(I) and wa (I), respectively. If the inequality

lwa (1) —w(I)] < ew(l)" (15.9)

holds for each instance I, we call A an e-approzimative algorithm for P. For
example, a 1-approximative algorithm for the TSP would always yields a tour
which is at most twice as lone as an optimal tour.

15.4 Approximation algorithms 447

Given an NP-complete problem, there is little row.m.ﬁo find a w.oaﬁoq:&
algorithm which solves P correctly. Thus it seems promising to _o.ow EWSM& Moﬂ
a polynomial e-approximative algorithm, with € as mﬁwz as wOm.mH.Emw. n %w, u-
nately, this approach is often just as difficult as moZ:.Hm the origina @Mo. mEm
In particular, this holds for the TSP, as the following result of Sahni an

Gonzales [SaGo76] shows.

Theorem 15.4.1. If there exists an e-approzimative polynomial algorithm for
the TSP, then P = NP.

Proof. Let A be an e-approximative polynomial algorithm .mOw the wa.gﬁ\o
will use A to construct a polynomial algorithm for determining a Hami .ﬁo-
nian cycle; then the assertion follows from Theorem 2.7.4. The construction
resembles the one given in the proof of Theorem 2.7.5. Let G = v, mv be a
connected graph, and consider the complete graph Ky on V with weights

1 forije B
i = e e|V| otherwise.
If the given algorithm A should determine a tour of weight n = |V for this
instance of the TSP, then G is obviously H.FB%OS%E.

Conversely, suppose that G contains a Hamiltonian o%&.m. Then a:.w corre-
sponding tour has weight n and is trivially optimal. As A is e-approximative
by hypothesis, it will compute a tour of weight w(m) < (1 + &)n. Suppose
that 7 contains an edge e ¢ E. Then

w(r) > (n—1)+(2+en) = (1+e)n+1,

a contradiction. Hence the tour 7 determined by A actually induces a Hamil-

«tonian cycle in G, so that it has in fact weight n. .

We m\m(,\m proved that G is Hamiltonian if and only if A mobchgm a ﬁo.E
of weight n for our auxiliary TSP, so that A would indeed yield a vo@boﬂzm
algorithm for HC.

Clearly, a result analogous to Theorem 15.4.1 holds for .Spm ATSP. Inter-
estingly, the situation is much more favorable for the metric TSP. We need
a definition and a lemma. Let K, be the complete graph on V/ = 1 PP ,:v
Then any connected Eulerian multigraph on V is called a spanning Eulerian
multigraph for K.

Lemma 15.4.2. Let W be the weight matriz of a ATSP on K, and let Q.H:
(V, E) be a spanning Eulerian multigraph for K. Then one can construct wit
complezity O(|E|) a tour m satisfying w(n) <w(E).

Proof. By Example 2.5.3, it is possible to determine with ooBEmuaﬁ.% O(|E))
an Euler tour C for G. Write the sequence of vertices corresponding ﬁo. C
v the form (3. Pi.io. Po. ... in, Pn,11), Where (i1,...,in) is a permutation

448 15 A Hard Problem: The TSP

of {1,...,n} and where the Pi,...,P, are (possibly empty) sequences on
{1,...,n}. Then (i1,...,%n,41) is a tour 7 satisfying

n
w(r) = Muédﬁ.t < w(E) (where iny1 =11),
j=1

since the sum of the weights of all edges in a path from z to y is always an
upper bound for w,,% and since each edge occurs exactly once in the Euler
tour C. O

We now construct spanning Eulerian multigraphs of small weight and use
these to design approximative algorithms for the metric TSP. The easiest
method is simply to double the edges of a minimal spanning tree, which results
in the following well-known algorithm.

Algorithm 15.4.3 (tree algorithm). Let W = (w;;) be the weight matrix
for a ATSP on K,,.

(1) Determine a minimal spanning tree T for K,, (with respect to the weights
given by W).

(2) Let G = (V, E) be the multigraph which results from replacing each edge
of T" with two parallel edges. -

(3) Determine an Euler tour C for G.

(4) Choose a tour contained in C' (as described in the proof of Lemma 15.4.2).

Theorem 15.4.4. Algorithm 15.4.3 is a 1-approzimative algorithm of com-
plezity O(n?) for ATSP.

Proof. Using the algorithm of Prim, step (1) has complexity O(n?); see The-
orem 4.4.4. The procedure EULER developed in Chapter 2 can be used to
perform step (3) in O(|E|) = O(n) steps. Clearly, steps (2) and (4) also have
complexity O(n). This establishes the desired complexity bound.

By Lemma 15.4.2, the tree algorithm constructs a tour 7 with weight
w(m) < 2w(T). On the other hand, the MST relaxation of Section 15.2 shows
that all tours have weight at least w(T'). Hence w(w) is indeed at most twice
the weight of an optimal tour. O

Example 15.4.5. Let us again consider Example 15.1.2. We saw in Example
15.2.3 that the MST relaxation yields the minimal spanning tree T of weight
w(T) = 186 displayed in Figure 15.2. A possible Euler tour for the doubled
tree is

(Aa, Du, Ha, Be, Ha, Du, Fr, St, Ba, St, Nu, Mu, Nu, St, F'r, Du, Aa),

Note that this is the one point in the proof where we make use of the triangle
ineaualitv

15.4 Approximation algorithms 449

which contains the tour

T &Qlb:'b«mlmmlmﬂ_ﬁlmﬁlwpll,?gli:lxg

of length 307; see Figure 15.7. Note that Theorem 15.4.4 only guarantees ﬁwmﬁ
we will be able to find a tour of length < 372; it is just good luck that 7 is

actually a considerably better solution.

Ha

& Fig. 15.7. Tour constructed by Algorithm 14.4.3

It is quite possible that Algorithm 15.4.3 constructs a tour SWOmw weight
is close to 2w(TSP); see [LaLRS85, Chapter 5]. In contrast, S.S difference
between the length of the tour of Example 15.4.5 and the optimal tour of

Example 15.3.2 is less than 23%. . o
Next we present a 1 _approximative algorithm, which i

[Chr76]; his method is a little more involved.

s due to Christofides

Algorithm 15.4.6 (Christofides’ algorithm). Let W = (w;;) be a weight
matrix for a ATSP on K.

(1) Determine a minimal spanning tree T of K,, (with H,mmw.mg to W).

(2) Let X be the set of all vertices which have odd degree in nﬁ.. -
(3) Let H be the complete graph on X (with respect to the weights given by

the relevant entries of W). N o
(4) Determine a perfect matching M of minimal weight in H.

