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Determining the number of all solutions, however, is an NP-hard problem; see
[IrLeg6). n
The analogous problem for the complete graph K5, (known as the stable
roommates problem) is more difficult; for example, it cannot be solved for
each choice of n and w. Irving [Irv85] gave an algorithm which decides with
complexity O(n?) whether there exists a solution and, if this is the case
actually finds one; see also [Gus88]. We recommend the excellent anyomam%m

5&&2 for further study of this type of problems; see also [BaRa97] for a
nice exposition.
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A Hard Problem: The TSP

Which way are you goin’. ..
Jim CROCE

Up to now, we have investigated only those optimization problems which allow
an efficient — that is, polynomial — algorithm. In contrast, this final chapter
will deal with a typical NP-complete problem: the travelling salesman prob-
lem already introduced in Chapter 1. We saw in Chapter 2 that no efficient
algorithms are known for NP-complete problems, and that it is actually quite
likely that no such algorithms can exist. Now we address the question of how
such hard problems — which regularly occur in practical applications — might
be approached: one uses, for instance, approximation techniques, heuristics,
relaxations, post-optimization, local optima, and complete enumeration. We
shall explain these methods only for the TSP, but they are typical for dealing
with hard problems in general.

We will also briefly mention a further extremely important approach to
solving hard problems: polyhedral combinatorics. A detailed discussion of this
vast area of research would far exceed the limits of this book; as mentioned be-
fore, the reader can find an encyclopedic treatment of the polyhedral approach
to combinatorial optimization in [Schr03].

15.1 Basic definitions

Let us recall the formal definition of the TSP given in Section 1.4:

Problem 15.1.1 (travelling salesman problem, TSP). Let w: E' — R+
be a weight function on the complete graph K,. We seek a cyclic permutation
(1,7(1),...,7" (1)) of the vertex set {1,...,n} such that

wim) = S w({i @)}

is minimal. We call any cyclic permutation 7 of {1,...,n} as well as the
corresponding Hamiltonian cycle
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in K, a tour; if w(m) is minimal among all tours, 7 is called an optimal
tour. The weights of the edges will be given via a matrix W, as explained in
Section 1.4.

We shall use the following example also already introduced in Section 1.4
to illustrate the various methods for finding a good solution of the TSP, which
are the subject matter of this chapter.

Example 15.1.2. Determine an optimal tour for

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 57 64 8 26 49 64 47 46
Ba | 57 0 88 54 34 83 37 43 27
Be | 64 8 0 57 56 29 60 44 63
Du 8 54 57 0 23 43 63 44 41
Fr |26 34 56 23 0 50 40 22 20
Ha | 49 83 29 43 50 0 80 63 70
Mu | 64 37 60 63 40 80 0 17 22
Nu | 47 43 44 44 22 63 17 0 19~
St \46 27 63 41 20 70 22 19 0

We saw in Theorem 2.7.5 that the TSP is NP-complete, so that we cannot
expect to find an efficient algorithm for solving it. Nevertheless, this problem
is extremely important in practice, and techniques for solving — or at least
approximately solving — instances of considerable size are essential.

Indeed, there are many applications of the TSP which bear little resem-
blance to the original travelling salesman interpretation. To mention a simple
example, we might have to prepare the machines in a plant for n successive
production processes. Let w;; denote the setup cost arising if process j is
scheduled immediately after process 7; then the problem of finding an order-
ing for the n processes which minimizes the total setup cost can be viewed as a
TSP. In [GrJRI1] the reader can find an interesting practical case study, which
demonstrates the relevance of approximation techniques for solving the TSP
to some tasks arising in the production of computers. A further impressive
example is described in [BkSh89]: applying the TSP in X-ray crystallogra-
phy resulted in dramatic savings in the amount of time a measuring process
takes. Several further applications are discussed in [LeRi75] and in [LaLRSS5,
Chapter 2].

Note that the instance given in Example 15.1.2 has a rather special struc-
ture: the weights satisfy the triangle inequality w;r < w;;+w,i. Of course, this
holds whenever the weights stand for distances in the plane, or in a graph, and

(more generally) whenever W corresponds to a metric space; see Section 3.2.
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Problem 15.1.3 (metric travelling salesman problem, ATSP). Let
W = (w;;) be a symmetric matrix describing a TSP, and assume that W

satisfies the triangle inequality:
Wi < Wij + Wik for 4,9:8 =1, vu s 57
Then one calls the given TSP metric or, for short, a ATSP.

Note that the TSP used in the proof of Theorem 2.7.5 is clearly metric.
Hence we have the following result:

Theorem 15.1.4. ATSP is NP-complete. O

Nevertheless, the metric property does make a difference in the degree of
complexity of a TSP: in the metric case, there always exists a good approxi-
mation algorithm; most likely, this does not hold for the general case, where
the triangle inequality is not assumed; see Section 15.4.

Let us conclude this section with a brief discussion of three further variants

of the TSP.

Problem 15.1.5 (asymmetric travelling salesman problem, ATSP).

Instead of K,,, we consider the complete directed graph K, on n vertices: we
allow the weight matrix W to be non-symmetric (but still with entries 0 on
the main diagonal). This asymmetric TSP contains the usual TSP as a special
case, and hence it is likewise NP-hard.

Example 15.1.6. We drop the condition that the travelling salesman mroﬂa
visit each city exactly once, so that we now consider not only Hamiltonian
cycles, but also closed walks containing each vertex of K, at least once. If
the given TSP is metric, any optimal tour will still be an optimal solution.
However, this does not hold in general, as the example given in Figure 15.1
shows: here (w,z,y,z, =, w) is a shortest closed walk (of length 6), but the
shortest tour (w, z,y, z, w) has length 8.

Y z

Fig. 15.1. A TSP forn =4
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Given a matrix W = (w;;) not satisfying the triangle inequality, we may
consider it as a matrix of lengths on K, and then calculate the corresponding
distance matrix D = (d;;). For example, we can use the algorithm of Floyd and
Warshall for this purpose; see Section 3.8. Of course, D satisfies the triangle
inequality and, hence, defines a metric TSP. It is easy to see that the optimal
closed walks with respect to W correspond to the optimal tours with respect
to D. Thus the seemingly more general problem described in Example 15.1.6
actually reduces to the metric TSP.

Finally, one may also consider an arbitrary connected graph G with some
length function w instead of K. Then it is not at all clear whether any
tours exist: we need to check first whether G is Hamiltonian. As proved in

Section 2.8, this feasibility question is already an NP-complete problem in
itself.

15.2 Lower bounds: Relaxations

From a practical point of view, it will often be necessary (and also sufficient) to
construct a reasonably good approximate solution instead of an optimal tour.
For example, it will suffice for most practical applications if we can provide
an efficient method for finding a solution which is at most 2% worse than
the optimal tour: using a vast amount of resources for further improvement
of the quality of the solution would not make any economic sense. In this
context, note also that input data — distances, for example — always have a
limited accuracy, so that it might not even mean much to have a truly optimal
solution at our disposal.

In order to judge the quality of an approximate solution, we need lower
bounds on the length of a tour, and these bounds should not only be strong
but also easily computable — aims which are, of course, usually contradictory.
A standard approach is the use of suitable relazations: instead of the original
problem P, we consider a problem P’ containing P; this auxiliary (simpler)
problem is obtained by a suitable weakening of the conditions defining P.
Then the weight w(P’) of an optimal solution for P’ is a lower bound for the
weight w(P) of an optimal solution for P.!

Unfortunately, in many cases it is not possible to predict the quality of the
approximation theoretically, so that we have to use empirical methods: for in-
stance, comparing lower bounds found by relaxation with upper bounds given
by solutions constructed by some heuristic. We shall consider various heuristics
in Section 15.5; now we discuss several relaxations which have proved useful
for dealing with TSP’s. In this section, P is always a TSP on the complete
graph K, on V = {1,...,n}, given by a weight matrix W = (w;;).

'Our discussion refers to the TSP, but applies to minimization problems in gen-
mnw._. Of course, with appropriate adjustments, it can also be transferred to maxi-
mization problems.
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A. The assignment relaxation

One choice for P’ is the assignment problem AP defined in Example 7.4.12
and studied in Chapter 14. Thus we seek a permutation 7 of {1,...,n} for
which wy (1) + -+ + Wn x(n) becomes minimal. In particular, we have to ex-
amine all cyclic permutations 7 (each of which determines a tour); for these
permutations, the sum in question equals the length of the associated tour.
Therefore we can indeed relax TSP to AP.

Note that we ought to be a little more careful here, since we should not just
use the given matrix W to specify our AP: the diagonal entries w;; = 0 would
yield the identity as an optimal solution, which would result in a completely
trivial lower bound: 0. As we are not interested in permutations with fixed
points for the TSP anyway, we can avoid this problem by simply putting
wi; = oo for all 7.2 Clearly, this modification guarantees that an optimal
solution of AP is a permutation without fixed points. If we should obtain a
cyclic permutation as the optimal solution of AP, this permutation actually
yields a solution of the TSP (by coincidence). Of course, in general, there is
no reason why this should happen.

It is also comparatively easy to determine the weight w(AP) of an op-
timal solution for the relaxed problem: the Hungarian algorithm of Section
14.2 will allow us to do so with complexity O(n?). Note that the Hungar-
ian algorithm actually determines maximal weighted matchings, whereas we
want to find a perfect matching of minimal weight for K, , (with respect to
the weights given by our modification of W). However, this merely requires a
simple transformation, which was already discussed in Section 14.1.

It turns out that w(AP) is usually a reasonably good approximation to
w(TSP) in practice — even though nobody has been able to prove this. Balas
and Toth considered random instances for values of n between 40 and 100
and got an average of 82% of w(TSP) for w(AP); see [LaLRS85, Chapter 10].
That the assignment relaxation has such good approximation properties is,
perhaps, to be expected, since the cyclic permutations form quite a big part
of all permutations without fixed points: the number of permutations without
fixed points in S, is about n!/e, so that there is about one cyclic permutation
among n/e fixed point free permutations; see, for example, [Hal86].

Balas and Toth examined the assignment relaxation also for the ATSP,
using 400 problems randomly chosen in the range 50 < n < 250. Here w(AP)
was on average 99,2% of w(ATSP).

Example 15.2.1. Consider the TSP of Example 15.1.2, where we replace the
diagonal entries 0 in W by 88 (the maximum of the w;;) to obtain the matrix
W' for an associated AP. In order to reduce this AP to the determination
of a maximal weighted matching, we consider the matrix W = (88 — wj;)
instead of W', as described in Section 14.1; note that W is the matrix given

2In practice, this is done by using a sufficiently large number M instead of oo:
for instance. M = max{w:.:3.i=1.....n}.



