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568 Chapter 13 NETWORK FLOWS AND APPLICATIONS

k = 1,...,n, the vertices u; and wy both occur exactly once in the 1-factor p. and
hence, the edge set

'={c'|e€F)
contains exactly t\vo edges of G that are incident on the vertex vg. It follows that f7 i

a 2-factor of G. The graph obtained from G by deleting the edges of this 2-factor jg »
(2r — 2)-regular graph, and the result follows by induction. o

Maximum Matchings and Minimum Veriex Covers

The theme of maz-min pairs of optimization problems, seen earlier in this chapter

=

and in Chapter 5, appears once again in the context of vertex covers.

DEFINITION: Let GG be a graph, and let C' be a subset of the vertices of G. Then sét ¢
is a vertex cover of graph (& if every edge of (& is incident on at least one vertex in (,

DEFINITION: A minimum vertex cover is a vertex cover with the least number of

vertices.

Example 13.4.7: For the bipartite graph shown in Figure 13.4.8, a maximum match-
ing (the bold edges) and minimum vertex cover (the solid vertices) both have cardinal-
ity 5.

Figure 13.4.8 A maximum matching and minimum vertex cover.

Proposition 13.4.7 [Weak Duality for Matchings]. Let M be a matching in a
graph G, and let C' be a vertex cover of G. Then |M| < |C/. & (Exercises)

Corollary 13.4.8 [Certificate of Optimality for Matchings]. Let M be a nmf,'Ch—
ing in a graph G, and let C' be a vertex cover of ¢ such that |M| = |C|. Then M'is a
maximum matching and C' is a minimum vertex cover. O (EXeI'CIS‘«’S)

Remark: The converse of Corollary 13.4.8 does not hold in general (see Exercises);
however, it does hold for bipartite graphs.

NOTATION: The neighbor set of a given subset W of vertices in a graph G 1s denoted
Ng (W) (instead of the usual N (7)) when there is more than one graph involved.

f
Theorem 13.4.9 [Konig, 1931] Let GG be a bipartite graph. Then the number 0]
1
edges in a maximum matching in G is equal to the number of vertices in a minimul
vertex cover of (.
; * he a
Proof: Let {X,Y} be the vertex bipartition of bipartite graph (, and let C* be
erbices;

3440

minimum vertex cover of . Then C* is the disjoint union of its set of X-V
% = C* N X, and its set of Y-vertices, C5 = C* NY, as illustrated in Figure 1
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Figure 13.4.9 Minimum vertex cover C* = O U 5.

Consid(‘r the bipartite subgraph Gy of graph G induced on the vertex bipartition

{C%,Y — Cy}. Let W be any qubael of C%. II' |[W| > |Ng, (W)|, then there would
exmt w € W such that Ng, (W — {w}) Ne, (W). But this would imply that
(Cx — {u'} UCy = C*is a vmte\ cover of Olaph G, contradicting the minimalil‘_\j
of C*. Thus, the b]pdltll(‘ graph (1 satisfies Hall’s (ondltlon and by Hall’s Theorem
(Theorem 13.4.3), i1 has a Cy-saturating matching M7, with | M| = |C%

Next, let (G5 be the bipartite subgraph induced on the vertex bipartition {\ %, Oy 1
Then a similar argument applied to graph G shows that it has a Cy —\atmal]no mat( h-
ing M3, with |[M5| = |Cy|. The edge set M = M; U M3 is Cledll_\ a matching in
graph G, and [M| = |C%|+ |C5| = |C*|. Thus, by CoroHar_\j 12.4.6, M is a maximum
matching. &

0-1 Matrices and the Konig-Egervary Theorem

An interesting interpretation of this last theorem involves 0-1 matrices, which are
matrices each of whose entries is 0 or 1.

Theorem 13.4.10 [Kiinig—Egel vary, 1931]. Let A be a 0-1 matrix. Then the maxi-
mum number of 1°s in matrix A, no two of which lie in the same row or column. is equal
to the minimum number of rows and columns that together contain all the 1’s in A.

Proof: Let (¢ be a bipartite graph with vertex bipartition {X, Y}, such that A is an
adjacency matrix of graph G, where X is the set of vertices corresponding to the rows
of matrix A, and Y is the vertex set corresponding to the columns. The result follows
by applying Theorem 13.4.9 (see Exercises). ¢

Application 13.4.4 The Bottleneck Problem: Suppose that a manufacturing pro-
cess consists of five operations that are performed simultaneously on five machines. The
time in minutes that each operation takes when executed on each machine is given in
the table below. Determine whether it is possible to assign the operations so that the
Process is completed within 4 minutes.

M1 M2 M3 M4 M5
Opl 4 5 3 6 4
Op2 5 6 2 3 5
Op3 3 4 5 2 4
Op4 4 8 3 2 7
Oph 2 6 6 4 5




