732 Chapter 26 Maximum Flow

26.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximum-flow problems. The
multiple-source, multiple-sink maximum-flow problem from Section 26.1 gave us
one example. Some other combinatorial problems seem on the surface to have little
to do with flow networks, but can in fact be reduced to maximum-flow problems.
This section presents one such problem: finding a maximum matching in a bipartite
graph. In order to solve this problem, we shall take advantage of an integrality
property provided by the Ford-Fulkerson method. We shall also see how to use
the Ford-Fulkerson method to solve the maximum-bipartite-matching problem on
agraph G = (V, E) in O(VE) time.

The maximum-bipartite-matching problem

Given an undirected graph G = (V, E), a matching is a subset of edges M C E
such that for all vertices v € V, at most one edge of M is incident on v. We
say that a vertex v € V is matched by the matching M if some edge in M is
incident on v; otherwise, v is unmatched. A maximum matching is a matching
of maximum cardinality, that is, a matching M such that for any matching M’,
we have |M| > |M’|. In this section, we shall restrict our attention to finding
maximum matchings in bipartite graphs: graphs in which the vertex set can be
partitioned into V' = L U R, where L and R are disjoint and all edges in E
go between L and R. We further assume that every vertex in V' has at least one
incident edge. Figure 26.8 illustrates the notion of a matching in a bipartite graph.

The problem of finding a maximum matching in a bipartite graph has many
practical applications. As an example, we might consider matching a set L of ma-
chines with a set R of tasks to be performed simultaneously. We take the presence
of edge (u,v) in E to mean that a particular machine ¥ € L is capable of per-
forming a particular task v € R. A maximum matching provides work for as many
machines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum matching in an undi-
rected bipartite graph G = (V, E) in time polynomial in |V| and |E|. The trick is
to construct a flow network in which flows correspond to matchings, as shown in
Figure 26.8(c). We define the corresponding flow network G' = (V', E’) for the
bipartite graph G as follows. We let the source s and sink 7 be new vertices not
inV,and we let V' = V U {s,t}. If the vertex partition of G is V = L U R, the

26.3 Maximum bipartite matching 733

(@) (b) ()

Figure 26.8 A bipartite graph G = (V, E) with vertex partition V' = L U R. (a) A matching
with cardinality 2, indicated by shaded edges. (b) A maximum matching with cardinality 3. (¢) The
corresponding flow network G’ with a maximum flow shown. Each edge has unit capacity. Shaded
edges have a flow of 1, and all other edges carry no flow. The shaded edges from L to R correspond
to those in the maximum matching from (b).

directed edges of G’ are the edges of E, directed from L to R, along with |V| new
directed edges:

E' ={(s,u) :ue LyU{(u,v):(u,v)e E}U{(v,t):veER}.

To complete the construction, we assign unit capacity to each edge in E’. Since
each vertex in V' has at least one incident edge, |E| > |V| /2. Thus, |E| < |E'| =
|[E|+|V| <3|E|,and so |E'| = O(E).

The following lemma shows that a matching in G corresponds directly to a flow
in G’s corresponding flow network G’. We say that a flow f on a flow network
G = (V, E) is integer-valued if f(u,v) is an integer for all (u,v) € V x V.

Lemma 26.9

Let G = (V, E) be a bipartite graph with vertex partition V' = L U R, and let
G' = (V', E') be its corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G’ with value | f| = |M|. Conversely, if f
is an integer-valued flow in G’, then there is a matching M in G with cardinality

M| =]

Proof We first show that a matching M in G corresponds to an integer-valued
flow f in G’. Define f as follows. If (u,v) € M, then f(s,u) = f(u,v) =
f(v,t) = 1. For all other edges (u,v) € E’, we define f(u,v) = 0. It is simple
to verify that f satisfies the capacity constraint and flow conservation.

734

Chapter 26 Maximum Flow

Intuitively, each edge (u#,v) € M corresponds to one unit of flow in G’ that
traverses the path s — u — v — ¢. Moreover, the paths induced by edges in M
are vertex-disjoint, except for s and ¢. The net flow across cut (L U {s}, R U {t})
is equal to | M |; thus, by Lemma 26.4, the value of the flow is | | = |[M].

To prove the converse, let f be an integer-valued flow in G’, and let

M ={(u,v):uel,veR, and f(u,v) >0} .

Each vertex u € L has only one entering edge, namely (s,u), and its capacity
is 1. Thus, each u € L has at most one unit of flow entering it, and if one unit of
flow does enter, by flow conservation, one unit of flow must leave. Furthermore,
since f is integer-valued, for each u € L, the one unit of flow can enter on at most
one edge and can leave on at most one edge. Thus, one unit of flow enters u if and
only if there is exactly one vertex v € R such that f(u,v) = 1, and at most one
edge leaving each u € L carries positive flow. A symmetric argument applies to
each v € R. The set M is therefore a matching.

To see that |M| = | f|, observe that for every matched vertex u € L, we have
f(s,u) = 1, and for every edge (u,v) € E — M, we have f(u,v) = 0. Conse-
quently, f(L U {s}, R U {t}), the net flow across cut (L U {s}, R U {t}), is equal
to |M|. Applying Lemma 26.4, we have that | | = f(LU{s}, RU{t}) = |[M|. m

Based on Lemma 26.9, we would like to conclude that a maximum matching
in a bipartite graph G corresponds to a maximum flow in its corresponding flow
network G’, and we can therefore compute a maximum matching in G by running
a maximum-flow algorithm on G’. The only hitch in this reasoning is that the
maximum-flow algorithm might return a flow in G’ for which some f(u,v) is
not an integer, even though the flow value | /| must be an integer. The following
theorem shows that if we use the Ford-Fulkerson method, this difficulty cannot
arise.

Theorem 26.10 (Integrality theorem)

If the capacity function ¢ takes on only integral values, then the maximum flow f
produced by the Ford-Fulkerson method has the property that | f| is an integer.
Moreover, for all vertices u and v, the value of f(u, v) is an integer.

Proof The proof is by induction on the number of iterations. We leave it as
Exercise 26.3-2. |

We can now prove the following corollary to Lemma 26.9.

26.3 Maximum bipartite matching 735

Corollary 26.11
The cardinality of a maximum matching M in a bipartite graph G equals the value
of a maximum flow f in its corresponding flow network G’.

Proof We use the nomenclature from Lemma 26.9. Suppose that M is a max-
imum matching in G and that the corresponding flow f in G’ is not maximum.
Then there is a maximum flow f' in G’ such that | f/| > |f]|. Since the ca-
pacities in G’ are integer-valued, by Theorem 26.10, we can assume that f”’ is
integer-valued. Thus, f’ corresponds to a matching M’ in G with cardinality
|M'| = |f'| > |f| = |M], contradicting our assumption that M is a maximum
matching. In a similar manner, we can show that if f is a maximum flow in G’, its
corresponding matching is a maximum matching on G. |

Thus, given a bipartite undirected graph G, we can find a maximum matching by
creating the flow network G’, running the Ford-Fulkerson method, and directly ob-
taining a maximum matching M from the integer-valued maximum flow f found.
Since any matching in a bipartite graph has cardinality at most min(L, R) = O(V),
the value of the maximum flow in G’ is O(V'). We can therefore find a maximum
matching in a bipartite graph in time O(VE') = O(VE), since |E'| = O(E).

Exercises

26.3-1

Run the Ford-Fulkerson algorithm on the flow network in Figure 26.8(c) and show
the residual network after each flow augmentation. Number the vertices in L top
to bottom from 1 to 5 and in R top to bottom from 6 to 9. For each iteration, pick
the augmenting path that is lexicographically smallest.

26.3-2
Prove Theorem 26.10.

26.3-3

Let G = (V, E) be a bipartite graph with vertex partition V' = L U R, and let G’
be its corresponding flow network. Give a good upper bound on the length of any
augmenting path found in G’ during the execution of FORD-FULKERSON.

2634 x

A perfect matching is a matching in which every vertex is matched. Let G =
(V, E) be an undirected bipartite graph with vertex partition V' = L U R, where
|L| = |R|. Forany X C V, define the neighborhood of X as

NX)={yeV:(x,y) e E forsome x € X} ,

