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Abstract 

In this paper, we present efficient layouts for complete graphs and star graphs. We show that an N-node complete graph can 
be optimally laid out using LN2/4] tracks for a colinear layout, and can be laid out in N4/16 + o(N4) area for a 2D layout. 
We also show that an N-node star graph can be laid out in N2/16 + o(N2) area, which is smaller than any possible layout of a 
similar-size hypercube. This solves an open question posed by Akers and Krishnamurthy in 1986. Both the layouts of complete 
graphs and star graphs are optimal within a factor 1 + o(l). 0 1998 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Deriving an efficient VLSI layout for an intercon- 
nection network improves the cost-performance of the 
resulting parallel architecture, both by reducing its 
cost (fewer chips, boards, and assemblies) and by low- 
ering various performance hindrances, such as signal 
propagation delay, drive power, and fraction of data 
transfers to off-chip destinations. Parallel processing 
interconnection networks are often characterized by 
their graph theoretic and topological parameters such 
as node degree, diameter, average inter-node distance, 
and bisection width While lower node degree directly 
translates to lower cost, the cost implications of the 
other parameters, as well as the effect on performance, 
depend on other factors that are not easily quantified. 
For example, a small diameter can potentially lead to 
higher performance by reducing the data transmission 
latency measured by the number of hops. However, if 
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the improved diameter necessitates the use of longer 

wires, the associated increase in signal propagation de- 

lays and message contentions might nullify the gain 

and even lead to lower overall performance. Efficient 

layouts for several interconnection networks can be 

foundin [7,11,17,19,22]. 

It has been previously shown that a particular class 

of Cayley graphs known as star graphs [2] possess de- 

sirable properties such as symmetry and strongly hi- 

erarchical structure, as well as smaller diameters, av- 

erage distance, and node degrees compared to similar- 

size hypercubes. The development of many efficient 

algorithms for the star graphs [3,4,20,21,24] and in- 

vestigation of their various properties [8,14] has con- 

firmed that the above topological superiority leads to 

a smaller number of communication steps. Our con- 

tribution in this paper is to show that star graphs also 

have more efficient layouts than the hypercube. Hence 

the lower graph-theoretic density and algorithmic step 
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count do indeed translate to higher performance at the 
hardware level. 

In [1,2], several open questions about the layout 
of star graphs were posed. In particular, the follow- 
ing question is stated in [l, p. 2231: “Can the star 
graph be laid out at least as efficient as the hyper- 

cube?’ This question is partially answered by Sykora 
and Vrt’o [22], who provide a layout for an N-node 

star graph that has an area of 4.5N2, which is of 
the same order of magnitude as that of a similar- 
size hypercube. However, its leading constant is con- 
siderably larger than that of a hypercube [5]. In this 

paper, we improve the answer to this question by 
providing an optimal layout for the star graph that 
has an area of N2/16 + o(N2), which is 4 times 
smaller than the lower bound N2/4 on the area of 

a similar-size hypercube. The upper bound given in 
this paper is 72 times smaller than the one in [22] 

and is within a factor 1 + o(1) from the lower 

bound. 
We show that the number of tracks required for 

the colinear layout of an N-node complete graph and, 
as a result, any N-node simple graph is no more 
than LN2/4]. This result exactly matches the lower 
bound for the colinear layout of complete graphs and 
improves the upper bound given in [7] by 25%. We 

also show that an N-node complete graph can be laid 
out in N4/16 + o(N4) area, which is optimal within a 
factor 1 + o(1) from its lower bound. 

2. Efficient layouts for complete graphs 

In this section, we present several optimal layouts 

for complete graphs. 
We use the grid model for VLSI layout of net- 

works [23], extended for nonconstant node degree [7, 
221. In this model, a network is viewed as a graph 
whose nodes correspond to processing elements and 
edges correspond to wires. The graph is then embed- 
ded in a 2D grid, where wires have unit width and a 
node of degree d occupies a square of side d. The 

wires can run either horizontally or vertically along 
grid lines. The area of a layout is the area of the small- 
est rectangle that contains all the nodes and wires. 
More details concerning the VLSI model can be found 
in [5,7,17,22]. 

2.1. Optimal colinear layouts of complete graphs 

In [7], a layout that requires 4(410s2N-1 - 1)/3 X 

N2/3 tracks is presented for mapping an N-node 

complete graph, KN, onto a linear array. In what 

follows, we show that such a mapping, called a 

colinear layout, can be considerably improved to one 

that uses LN2/4J tracks, which exactly matches the 

bisection-based lower bound. 

To obtain the colinear layout, we first place the N 

nodes, labeled 1 through N, along a row. Let a link 
be type-i if it connects two nodes whose addresses 

differ by i. Then the N(N - 1)/2 links in KN can 

be classified into types 1,2,3, . . . , N - 1, and there 
are N - i type-i links. To lay out KN, we place all 

the type-l links in one track, all the type-2 links in 

two tracks, where links connecting nodes with odd 

addresses are put in one track and links connecting 

nodes with even addresses in the other, and then 

all the type-i links in min(i, N - i) tracks for i = 

3,4,5, . . . , N - 1. More precisely, type-i links are 

placed in i tracks if i 6 N/2, where links are put in the 
same track if the remainders of their node-addresses 
modulo i are the same, and each of the N - i type-i 

links is placed in a different track if i > N/2. Clearly, 

such an arrangement will not result in overlapped 
links within a track. The resulting layout for a K9 is 

illustrated in Fig. 1. 

The total number of tracks in the layout described 

above is equal to 

N-l IN/21 N-l 

~rnin(i,N-1)=-z-i+ -2 (N-i) 

i=l i=l i=LN/2J+l 

LNI2J fN/21-1 
= c i + c i = LN2/4]. 

i=l i=l 

Since the bisection width of KN is equal to N2/4 
when N is even and (N’ - 1)/4 when N is odd, this 
layout is strictly optimal in terms of the number of 

tracks for colinear layouts of complete graphs. 
A simple graph is a graph that has no self-cycles 

at any node and no multiple links between any pair 
of nodes. Since any simple graph can be embedded 
into a complete graph of the same size, we obtain the 
following theorem. 
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Fig. 1. A colinear layout for the g-node complete graph Kg. 

Theorem 2.1. The number of tracks required for the 

colinear layout of an N-node simple graph is at most 

lN2/41. 

This upper bound is 25% smaller than the one given 

in [7, Theorem 11. The above number of tracks leads 
to an area of N(N - 1) LN2/4J x N4/4. 

2.2. Optimal 20 layouts of complete graphs 

Although the method introduced in the previous 
subsection leads to the smallest possible number of 
tracks for the colinear layout of a complete graph, 
layouts with smaller area can be obtained using 2D 
layouts. Based on the previous colinear layout, we first 
derive an area-efficient layout for directed complete 
graphs, where each pair of nodes are connected by 
two directed edges. Without loss of generality, we 
assume that N = ml x rn2 for some pair of integers 
ml,m2 = O(a). 

To obtain an area-optimal layout, we put the N 
nodes of the complete graph, labeled (i, j) for i = 
1,2,..., ml, j = 1,2 ,..., m2, on an ml x m2 grid. 
Two neighboring rows are separated by 2ml Lrng/4] 
tracks while two neighboring columns are separated 
by 2mz Lm:/4] tracks. We call a link from the source 
node (il, jl) to the destination node (iz, j2) a type- 
(i~,jt,j2-jt)link.Ifit=i2orjt==j2,wecanroute 
the link as in the colinear layout. Otherwise, we first 
route it from the source node to the vicinity of the 
upper right comer of the turning node (il, j2) along 

a horizontal track, and from there to the destination 
node (i2, j2) along a vertical track. Recall that we need 
min(k, m2 - k) tracks for all the m2 - k type-k links 
in the colinear layout of an undirected K,,. Since 
m 1 links go from the node (il , jt) to node (il, j2) 
as the turning or destination node, and vice versa, we 
can expand a track in the colinear layout of a k,, to 
2m 1 tracks to accommodate the horizontal segments of 
the 2ml directed links, leading to 2ml Lrnz/4] tracks 
above each row of nodes. 

We next show that the vertical segments of all 
the links to the immediate right of a column can be 
placed in 2rnzLrni/4] tracks. We present a possible 
arrangement as follows. We place all the type-(x, y, z) 
links within the bundle (i 1, k), if y = jt and z = k or 
-k for some positive integers il and k, for all integers 
x = 1,2,3 ,..., ml. In other words, links are put 
within the same bundle if their source nodes belong to 
the same column il and the difference between their 
row numbers of the source and destination is the same 
(i.e., equal to k or -k). There are m2(m 1 - 1) bundles 
between a pair of columns. Bundle (i 1, k) can be laid 
out using 2 min(k, m 1 - k) successive tracks, which is 
similar to the layout for two groups of type-k links in 
the colinear layout of a K,, . More precisely, a link is 
placed in the first half of the bundle to which it belongs 
if [(il - 1)/k] is even and placed in the second half 
otherwise. Within the half of bundle, a link is placed 
in the lth track if i 1 mod k = 1. Note that we place the 
vertical segments of links of type-(it , jt , k) and type- 
(il, jt , -k) alternatively along a vertical track when 
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Fig. 2. A 2D layout for an undirected complete graph Kg. 

k < ml /2 to avoid overlapping. By arranging links 
according to the above rules, the vertical segments of 
all the 2m2(ml -k) type-(x, y, k) and type-(x, y, -k) 
links,x=l,2,3 ,..., mt,y=1,2,3 ,..., m2,canbe 
placed in 2m2 min(k, ml - k) tracks. As a result, the 
total number of vertical tracks required is equal to 2m2 

times the required number of tracks Lm:/4J for the 

colinear layout of a k,, ; that is 2m2 Lrnf/41. 

Since a node occupies a square of side rnlrn2 - 1, 
the area required for the above 2D layout of the 
directed KN is given by 

ml(2mt l&41 + 17211112 - 1) 

x m2(2m2 LmT/4J + ml1712 - 1) 

= N4/4 + 0(N3.5). 

For an undirected KN , where each pair of nodes are 
connected by an edge only, the required area can be 
reduced to N4/16 + 0(N3.5) by properly removing 
half of the tracks in both horizontal and vertical 
directions. One of the possible methods is to remove 
the links within the second half of each of the bundles 
and, their horizontal segments as well as half of the 
links whose sources and destinations have the same 
row or column numbers. Fig. 2 shows a resultant 
2D layout for an undirected KS. Note that there are 
12 tracks between 2 neighboring rows or columns in 

the layout for a directed Kg; while after the removal 
of the second halves of bundles, there are only 6 
vertical tracks left between two neighboring columns, 
and there are 10,2, and 6 horizontal tracks left above 
the lst, 2nd, and 3rd rows, respectively, in the layout 
for an undirected K9. 

Theorem 2.2. An N-node complete graph can be laid 

out in N4/16 + o(N4) area. 

These layout areas are larger than their respective 

lower bounds by a factor of 1 + o(1) and are thus 
quite close to being strictly optimal. In the following 
subsections, we will show that the optimal layouts for 
complete graphs can be used to derive efficient layouts 
for star graphs. 

3. Optimal layouts for star graphs 

An n-dimensional star graph, n-star, is a symmetric 
graph that has N = n! nodes of degree n - 1 [2]. Each 
node in an n-star is assigned a label, which is a distinct 
permutation of the set of n symbols { 1,2,3, . . . , n}. 
Two nodes are connected with a dimension-i link, 
2 < i 6 n, if and only if the label of one node can 
be obtained from the other by interchanging the first 
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Fig. 3. Sm~cture of a (a) 3-star, (b) 4-star and (c) top view of a 6-star and one of its S-star subgraphs. Each pair of the S-star subgraphs within 

the 6-star is connected by 4! dimension-6 links. 

symbol and the ith symbol. An n-star contains n 
disjoint (n - 1)-stars as subgraphs, each pair of which 
are connected by (n - 2)! links. We can view an (n - 

I)-star as a supemode, and then the n-star becomes 
an n-supemode complete graph with multiple edges. 
Top-level views for a 6-star and its 5-star supemodes 
and the complete structures of a 4-&u and a 3-star are 

illustrated in Fig. 3. 
Let 121 = [,/Zl and 122 = m/nil. Recall that the 

grid layout for a K,,,,, with 2 edges between each pair 

of nodes requires n4/4 + o(n4) area. Similarly, a K, 
with (n - 2)! edges between each pair of nodes can 
be laid out in (n2(n - 2)!)‘/16 + o(n*(n - 2)!)2 = 
N2/16 + o(N2) area. This can be easily done by 
expanding each side-(2n - 2) node into a side-@ - l)! 
node and replicating each link into (n - 2)!/2 links. 

To lay out an n-star, we first place nodes belonging 

to the same (n - 1)-star subgraph within in a block of 
side (n - l)!, which we call an (n - 1)&o&, and lay 
out the dimension-n links using the previous layout 
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for a K,,,“? with multiple edges. We will eventually 
connect each of the links incident to the (n - I)-block 
to a certain node within the block. From the layout 

of the K,, , ,12 7 we can see that about (n!)2/16 area is 
required for such wiring. We can then continue to lay 
out the (n - I)-star within each of the (n - 1)-blocks. 
This process can be done recursively until the number 

of nodes within a block to be laid out is small. Then we 
use any viable method to lay out these small substars. 

Theorem 3.1. An n-star can be laid out in N2/16 + 
o(N2) area. where N = n!. 

Proof. To lay out all the dimension-n links, N2/16 + 
o(N2) area will be required based on the layout of 

a G,,, with (n - 2)! edges between each pair of 
nodes. To lay out an i-block, i = n - 1, n - 2, n - 

3 , . . . , 1, we first connect the wires outside the block 

to appropriate (i - l)-blocks within it, and then lay 
out the dimension-i links of the i-star within the i- 
block using the layout for a K;,i2, where il = [&I 
and i2 = [i/it]. Note that iti -i out of the ili2 i- 

blocks can be removed since there are only i(i - l)- 
stars within a block. The number 1 can be any integer 
smaller than n and greater than 3. In what follows, 
we assume 1 = 5. The area for a 5-block is 0(n2) 
since there are O(n) links incident to it. If a side- 
(n - i)i! square is not large enough to accommodate 
the wires from outside the i-block and the i(i - 1) 
blocks within it, we simply expand the i-blocks and 
maybe the outside (i + I)-blocks, (i + 2)-blocks, and 
so on, if necessary. The maximum height or 
increases due to such expansion is smaller than 

[G +G)] 

width 

As a result, the layout area for an n-star is N2/16 + 
o(N2), which is mainly occupied by dimension-n 
links. q 

This layout area is smaller than the one given in [22] 
by a factor of 72. In [28] we have shown that the layout 
area of an N-node interconnection network is at least 

equal to ]N/2J2 x rN/212/T& if f total exchange 
(TE) tasks can be executed in f TTE communication 
time and that (n - 1) TE tasks can be executed in 
nN + o(nN) communication time in an n-star under 
the all-port communication model. As a result, the 
lower bound on the VLSI area of an N-node star graph 
is N2/16 - o(N2) and the upper bound we derived is 
within a factor 1 + o( 1) from it. 

There are a wide class of other interconnection 
networks, including pancake graphs [1], hierarchi- 
cal cubic networks (HCNs) [ 121, hierarchical folded- 
hypercube networks (HFNs) [lo], hypemets [15], 
transposition networks [ 16,181 recursively connected 
complete (RCC) networks [ 131, tightly connected net- 
works (TCNs) [6], hierarchical swapped networks 
(HSNs) [26], multi-dimensional hypemets [25], and 
recursive hierarchical fully-connected (RHFC) net- 
works [25], which are also recursively interconnected 
as complete graphs. By using techniques introduced 
in this paper, we can also obtain the best known VLSI 
layouts for the above networks. These techniques can 
also be applied to a variety of other hierarchical net- 
works, such as WK recursive networks [9] and cyclic 
networks [ 271. 

4. Conclusion 

In this paper, we have presented efficient layouts 
for complete graphs and star graphs. We showed that 
an N-node complete graph could be optimally laid 
out using ]N2/4J tracks for a colinear layout, and 
could be laid out in N4/ 16 + o(N4) area for a 2D 
layout. We also showed that an N-node star graph 
could be laid out in N2/16 + o(N2) area. This solved 
an open question posed by Akers and Krishnamurthy. 
The areas of the layouts for complete graphs and star 
graphs are both optimal within a factor 1 + o( 1). Our 
layout methods can also be extended to a variety of 
other hierarchical networks. 
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