CORSO di ALGEBRA (M-Z)

PROVA SCRITTA 27-01-2012

Svolgere gli esercizi esplicitando il percorso logico seguito per giungere alla soluzione. E' permesso solo consultare appunti e testi.

Parte I

ESERCIZIO 1.1. Determinare il numero degli "anagrammi" (anche privi di senso) della parola ITALIANI. Determinare quanti fra questi contengono almeno una delle sequenze: ALI, LIA,ITI.

ESERCIZIO 1.2. In \mathbb{Z}_{275}

- i. Determinare le soluzioni dell'equazione [15] x = [50],
- ii. Descrivere il gruppo degli elementi invertibili e determinare la sua cardinalità,
- iii. Descrivere il sottogruppo generato da [35] e determinare la sua cardinalità.

Parte II

ESERCIZIO 2.1. Si consideri lo spazio vettoriale reale **R**⁴. Sia

$$W = \{(a,b,c,d) \in \mathbb{R}^4 : a+c = 0 \text{ e } b = a+2d\}.$$

- i. Dimostrare che W è un sottospazio.
- ii. Determinare una base di W e quindi la sua dimensione.
- iii. Determinare un sottospazio U tale che W+U = \mathbb{R}^4 e W \cap U ={ \mathbb{Q} }.
- iv. Il suddetto sottospazio U è unico?

ESERCIZIO 2.2. Sia $\mathbf{R}_2[x]$ lo spazio vettoriale dei polinomi a coefficienti reali nell'indeterminata x di grado ≤ 2 . Sia L l'endomorfismo di $\mathbf{R}_2[x]$ rappresentato, rispetto alla base canonica, dalla matrice

$$\begin{array}{ccccc} 3 & 2 & 3 \\ A = 1 & 4 & 3 \\ 1 & 2 & 5 \end{array}$$

- i. Determinare l'immagine $L(1-x^2)$ del polinomio $(1-x^2)$.
- ii. Determinare il nucleo e l'immagine di L.
- iii. Verificare che L è diagonalizzabile.
- iv. Determinare una base B e una matrice diagonale D tali che D sia la matrice che rappresenta L rispetto a B.