Name: ______ Surname: _____

Exercise 1 (4+2 points): Analyze the circuit in figure (up to the minimal automaton). Then, provide the temporal diagram of the circuit with the input sequence 110010.

Exercise 2 (7 points): Design a sequential circuit with one input x and two outputs z1 and z0. Output z1 must be 1 if the last three input bits exactly contain two 1s, while z0 must be 1 if the last two bits are equal. Use an SR FF for the MSB and T FFs for the remaining bits.

Exercise 3 (3 points): By using Boolean algebra, prove that:

Exercise 4 (4 points): Interconnect 4 registers R1...R4 through a bus so that:
•
$$I = Ab + \overline{a} \overline{b} + Ac + b + \overline{a} \overline{b} + \overline{a} \overline{c} = b + \overline{a} \overline{b} + ac + \overline{a} \overline{c}$$

= $(b + \overline{a})(b + \overline{b}) + ac + \overline{a} \overline{c} = b + \overline{a} + ac + \overline{a} \overline{c} = b + \overline{a} + ac + \overline{a} \overline{c}$
= $(b + \overline{a})(b + \overline{b}) + ac + \overline{a} \overline{c} = b + \overline{a} + ac + \overline{a} \overline{c} = b + \overline{a} + ac - \overline{a} \overline{c}$
= $(b + \overline{a})(b + \overline{b}) + ac + \overline{a} \overline{c} = b + \overline{a} + ac + \overline{a} \overline{c} = b + \overline{a} + ac - \overline{a} \overline{c} = b + (\overline{a} + a)(\overline{a} + c)$
Exercise 4 (4 points): Interconnect 4 registers R1...R4 through a bus so that:
• If R1 is even, then the content of R2 goes into R3 and R4
• otherwise, the content of R3 goes into R1 and R2.
Movements are enabled only if the maximum between R1 and R2 is multiple of 4. b is the
 $b = b + \overline{a} + c$
 $b = c + \overline{a} + c$
 $c = c + \overline{a} + c$
 $c = c + \overline{a} + c$
 $c = c +$

Exercise 5 (4 points): Given $X = \langle 0 \rangle$; 10000; 0010000000 > and $Y = \langle 1 \rangle$; 01111; 0100000000 > in IEEE half-precision format, calculate X+Y and represent the result both in IEEE half-precision and in decimal notation.

Exercise 6 (2+1+1+2 points)

- Consider the circuit in figure and write down the BE of function f
- Write the truth table for f
- Write the minimal POS expression for f
- Write *f* in ALLNOR form.

Exercise 1 (4+2 points): Analyze the circuit in figure (up to the minimal automaton). Then, provide the temporal diagram of the circuit with the input sequence 100110.

Exercise 2 (7 points): Design a sequential circuit with one input x and two outputs z1 and z0. Output z1 must be 1 if the last three input bits represent an odd negative number, while z0 must be 1 if the last two bits are different. Use an SR FF for the MSB and T FFs for the remaining bits.

Example:	x 011110010000011 z1 000110000000000		
1	z0 010001011000010		
ONO 1			
011			
100 01	10/01 $11/00$	\mathcal{M}_{γ}	
109 10	$00/00 \ 01/11$	14	01 (1 (2
110 11	$1 \partial (0 1 1 0) G \Lambda$	ט זי ט ביט	0 6 0
		d (o	0 1 0
× y2 y1 y3	Y2 Y1 Y0 Z1 Z0	SER2 T, To) 1010	0
1000		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	lz (y y + y _o)
0100		- 0 0 ' 419 M12	<u> </u>
0110			0 1 6 6
1000	0 0 0 0 0		
1001			
	10001		
1100		-0 1 0 $Z_0 = 2$	go + xyzyo
1110		-000 +	a y, yo
	~	$= \varkappa \eta_v$	$+ \overline{x} \overline{y}_{0}(y_{0} + y_{1})$
200 2 00 01 (242	me	M2 00 01 (1 10
h 20 -	140 - 00 - 00		10
0100	0 1 - 10		9 00 11
	100000		10 1
S2= Y1 +	xy_b $R_2 = \overline{x} y_b$	$\nabla_{i} = \pi \overline{y_{i}} \overline{y_{0}} + \pi \overline{y_{i}} \overline{y_{0}}$	$T_{0} = \overline{z} \widehat{y}_{0} + \chi y_{0}$
		$+ \overline{\chi} y_{1} y_{0} + \overline{\chi} y_{1} y_{0}$	$= \pi \bigotimes \mathcal{Y}_{o}$
		$= \pi(y, \otimes y_0) +$	v
		$\overline{\chi}(y_1 \oplus y_0)$	
		$= \mathcal{A} \oplus (\mathcal{A} \oplus \mathcal{A})$	

Exercise 3 (3 points): By using Boolean algebra, prove that:

$$ab+c + \overline{a}(\overline{b}+\overline{c}) + (a \oplus \overline{c}) = \overline{a} + b + c$$

$$ab+c + \overline{a}(\overline{b}+\overline{c}) + ac + \overline{a}\overline{c} = ab + c + \overline{a}\overline{b} + \overline{a}\overline{c} + ac$$

$$= ab + \overline{a}\overline{b} + c + \overline{a}\overline{c} = ab + \overline{a}\overline{b} + (c + \overline{a})(c + \overline{c}) = ab + \overline{a}\overline{b} + c + \overline{a}$$

$$= ab + \overline{a} + c = (a + \overline{a})(b + \overline{a}) + c = b + \overline{a} + c$$

$$\overline{a}'$$

Exercise 4 (4 points): Interconnect 4 registers R1...R4 through a bus so that:

- If R1 is odd, then the content of R3 goes into R2 and R4
- otherwise, the content of R2 goes into R1 and R3.

LSB of R1

Movements are enabled only if the minimum between R1 and R2 is not multiple of 4.

Exercise 5 (4 points): Given X = < 1; 10001; 0100000000 > e Y = < 0; 10000; 1100000000 > in IEEE half-precision format, calculate X+Y and represent the result both in IEEE half-precision and in decimal notation.

14 base lo: -1,5

Exercise 6 (2+1+1+2 points)

- Consider the circuit in figure and write down the BE of function f
- Write the truth table for f
- Write the minimal POS expression for f
- Write *f* in ALLNOR form.

