Exercise 1:

a) Turn in base 4 the decimal number 243
b) Subtract to the result the number 310_{4}
c) Turn the resulting number in base 2 and multiply the result by 101_{2}
d) Turn the result into base 16
e) Consider the number obtained at the end of point (c) as a number in 2-complement and turn it into base 10

Exercise 2: Turn 9,375 10 in IEEE half-precision format. Then, sum it to $<1 ; 10000 ; 1101110000>$, write the result in IEEE half-precision format and finally convert the resulting number in base 10 .

Exercise 3: By using axioms and laws of Boolean algebra, prove the following equlity:

$$
(x \oplus y)(x+\bar{x} y+z)(\bar{y}+\bar{x} y+z)=x \oplus y
$$

Exercise 4: Given the side truth table:
a) Compute y2 by using a 4-to-1 MUX
b) Write a minimal POS for y0
c) Write an ALL-NAND expression for y1
d) Realize the whole function by using a ROM

Exercise 5: Design a combinatorial net for controlling an irrigation system. The system should be open if the time is between 10 pm and 11 pm , and either the weather is sunny or the ground is not wet.

x 3 x 2 x 1 x 0	y2 y1 y0
$\begin{array}{llll}0 & 0 & 0 & \end{array}$	0110
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	110
$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	110
$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	110
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1111
10000	1001
$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1001
$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	110
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 0\end{array}$
1100	- - -
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	- - -
$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	110
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	110

