SECOND MID-TERM EXAM SIMULATION
 30/12/2020

Exercise 1 (8 points) Given 8 registers S0, S1, S2, S3, D0, D1, D2, D3, design a circuit that enables the following transfers:

1. If the sum of the values in S 0 and S 1 is greater than the sum of the values in S 2 and S 3 , then Di receives the content of Si .
2. If the sum of the values in S 0 and S 1 is smaller than the sum of the values in S 2 and S 3 , then Di receives the content of $\mathrm{S}_{(\mathrm{i}+1)}$ Mod 4;
3. Otherwise, Di receives the minimum among the content of Si and $\mathrm{S}_{(\mathrm{i}+1)}$ Mod 4. All transfers are enabled only if the content of S2 is not zero.

Exercise 2 (4+2 points) Minimize the following Mealy automaton with initial state S 0 :

	a	b
S 0	$\mathrm{~S} 0 / 0$	$\mathrm{~S} 1 / 1$
S 1	$\mathrm{~S} 4 / 0$	$\mathrm{~S} 3 / 0$
S 2	$\mathrm{~S} 4 / 0$	$\mathrm{~S} 3 / 1$
S 3	$\mathrm{~S} 2 / 0$	$\mathrm{~S} 3 / 0$
S 4	$\mathrm{~S} 4 / 0$	$\mathrm{~S} 1 / 1$

Then turn the minimum automaton into the equivalent (minimum) Moore automaton.

Exercise 3 ($\mathbf{8}+\mathbf{4}$ points) By using FFs of kind JK, design a sequential net with 2 input lines x 1 and x 0 and one output z such that $\mathrm{z}=1$ if and only if the number of 1 s received so far on the two input lines have the same parity (that is, the 1 s received on x 1 and on x 0 are either both even or both odd)

Example: x1: 1101110101

$$
\begin{array}{r}
\text { x0: } 0111011011 \\
\text { z: } 0011001011
\end{array}
$$

Then, draw the temporal diagram for the input of the previous example.

Exercise 4 (4 points) Draw an asynchronous counter modulo 5, by using JK FFs with asynchronous inputs.

