MID-TERM EXAM SIMULATION (Nov. 26th, 2020)

Exercise 1 (4 points): By using the Boolean algebra, prove the following equality:

$$
x+(x+\bar{z})(\bar{x}+y)+y=x+\bar{z}+y
$$

Then, write the dual and the complementar of such equality.
Exercise 2 (3 points): Write the truth table of the control circuit of an alarm system. The alarm is activated when the correct PIN number is given or when a signal from the remote controller is received; moreover, no door nor window must be open. Finally, assume that the alarm is never simultaneously activated with the PIN number and the remote controller.

Exercise 3 (4 points): Sum and multiply the following two numbers in the IEEE half-precision format: $<0 ; 10011 ; 1001110000>$ and $<1 ; 10110 ; 1001000000>$. The obtained results are exact or approximate?

Exercise 4 (3+1+2 points): Consider the following circuit:

a) give the boolean expression associated to the exit of the circuit;
b) give the associated truth table;
c) find the minimum boolean expression for the resulting boolean function.

Exercise $5(2+3+2$ points): Given the following truth table:

$\boldsymbol{X} \boldsymbol{Y} \boldsymbol{Z}$	$\boldsymbol{A} \boldsymbol{B} \boldsymbol{C}$		
0	0	0	1

a) implement C with a MUX 2-to-1;
b) implement the boolean function described by the truth table with a PLA;
c) find an ALL-NAND expression for A.

Exercise 6 (4 points): Convert 284_{10} in base 4 . The turn the obtained number in base 16 and sum such a number to $2 \mathrm{~A} 4_{16}$. Finally, turn the result in base 2 and write its opposite (working in the format of 2complement with 12 bits).

Exercise 7 (2 points): Say whether 1111001 is a Hamming 4-to-3 codeword and, if not, identify where the error took place.

