

Notes on the interconnection among registers

Annalisa Massini

revision by Daniele Gorla

I. Registers

A memory cell, able to store all the k bits of a word (that is an indivisible information unit, usually
made up of 8, 16, 32 or 64 bits), is called register. It is made up by k elementary memory cells (FF),
each containing one information bit. In these notes we shall work with FFs of kind SR, but
everything can be easily adapted to other kinds of FFs.

Diagrammatically, we shall represent a registe ras follows:

The thick arrow denotes a set of k lines, one for every elementary cell (FF) of the register; hence,
we are auuming here a PIPO register. Line inR is used to simultaneously enable all the k
elementary cells to writing.

II. Register Interconnection

Moving info among the various registers is done through interconnection nets that allow to move
data in the computing modules or in other regions of the memory. To be precise, it would be better
to speak about copying info, and not moving, since the content of the source register remains the
same and a copy is stored into the destination register.

We can distinguish 4 interconnection modalities, obtained according to whether the source and the
destination are fixed or variable:

 Fixed destination

Variable destination

Fixed source point-to-point (logic gates or
tri-state buffers)

DECODER

Variable source Multiplexer mesh or bus

1. Fixed Source and Destination: one-to-one interconnection

This interconnection allows to copy the content of a given source register R into a given destination
register R'.

Output lines

Input lines

 R inR

 R R'

inR'

Every time we have to move info from R to R', line inR' must be set. In the following schema, inR'
acts on the AND gates and enables the transfer:

Instead of logic gates, we can also use a tri-state buffer, that is an electronic switch drawn in the
following way:

When the control signal s of the buffer is:

- 0 the impedence between input and output of the buffer is very high and so the switch is
open (i.e., the link between the input and output is “cut”);

- 1 the impedence is negligible, and so a and c are directly linked and the input is given in
output:

o the value of c is 0 if a is 0
o the value of c is 1 if a is 1.

The device can hence assume three state (from here the name):
- open switch: s = 0
- closed switch and output 0: if s=1 and c=0
- closed switch and output 1: if s=1 and c=1.

In the following schema, inR' (that now plays the role of the previous signal s) is now used to
control all buffers between the FFs of the two registers:

inR'

S’1

R’1

S1

R1

S’k

R’k

Sk

Rk

s

c a

inR'

S’1

R’1

S1

R1

S’k

R’k

Sk

Rk

We can also design a net that allows for the bidirectional transfer of info between R and R'; in this
case, we should also provide R with a control line inR:

The implementation details (both with logic gates and with buffers) are an easy exercise and left to
the reader.

2. Variable source and fixed destination: many-to-one interconnection with a multiplexer

The source register Ri is any of a set of N registers; the destination Rd is given:

The control lines of the MUX c1, …, cn (where n is the superior integer part of log2 N) provide the
binary encoding of the index i of register Ri whose content must be copied into Rd. The above
MUX, with thick inputs and output, actually denotes a set of k MUXs, one for each of the k FFs of
the registers:

The first FF of every source register
is connected with the first MUX,
whose output goes to the first FF of
Rd; the second FF of every source
register is connected with the second
MUX, whose output goes to the
second FF of Rd; and so on until the
last FF. The selection lines c1, …, cn
hold the same value for each MUX
since they have to select one by one
the bits of the same source register
(the binary sequence c1 c2…cn is the
index i of the selected source
register).

inR' inR

 R R'

inRd

c1…cn

R1

R2

RN

Rd

inRd

c1…cn

c1…cn

c1…cn

3. Fixed Source and variable destination: one-to-m interconnection with decoder

The source Rs is fixed, whereas the destination can be any Ri of a set of N registers, that is selected
by a decoder when a control line inR holds 1:

It could be tempting to realize the one-to-many interconnection with a DEMUX (dually w.r.t. the
many-to-one interconnection), i.e. something like this:

However, this does NOT work well; indeed, the the non-selected lines of the DEMUX contain a 0
that, if not properly controlled, would put 0 in all non-selected destinations. Controlling the writing
in the destinations requires also in this case a DEC, for properly setting lines in_Ri. Hence, the
DEMUX would be useless!

4a. Variable source and destination: many-to-many interconnection through a mesh

The most complex case is when we have to interconnect M source registers with N destinations:

mux1

mux2

muxN

c1
1…c1

m

Rd1

Rd2

RdN

Rs1

Rs2

RsM

c2
1…c2

m

cN
1…cN

m

inR1

inR2

inRN

inRd

The control line inR' enables writing in one
of the N destinations. The actual destination
(that receives the content of register Rs) is
register Rj, where j is binary encoded by the
n selection lines c1...cn, inputs of the
decoder; only the j-th output of the decoder
is set.

To realize the net we need N multiplexer, muxi, one for every destination (actually, each of these
MUXs represents k one-bit MUXs, one for every FF of the registers: this is analogous to the case
with variable source and fixed destination). MUXi is controlled by lines ci

1…ci
m (where m is the

superior integer part of log2 M) and are used to select one of the M sources Rsj by providing the
binary encoding of the index j of the register whose content must be copied. The destination register
Rdh that should receive the datum is enabled by the signal inRdh, that is put in AND with a global
signal inRd that enables all transfers.

If we remove the distinction between source and destination registers, the interconnection net is
becomes:

Again, the writing into a register is obtained through the AND between the global signal inRd and
inRi (the writing signal for the specific register i). The selection of the source register for destination
Ri is done through the control lines of muxi.

Conceptually a mesh is quite easy (it is obtained via several many-to-one interconnections). Its
drawback lies in the cost: indeed, using a high number of registers would require an unaffordable
number of gates. As an example, try to estimate the number of gates necessary for building a mesh
like the previous one with 128 32-bits registers.

A cheaper kind of mesh. To reduce costs, we can use just one MUX (always remember that they
are k, one for every FF of the registers):

mux1

mux2

muxN

inRd

c1
1…c1

n

R1

R2

RN

c2
1…c2

n

cN
1…cN

n

inR1

inR2

inRN

With this net, the content of Ri is output by the MUX if the control lines c1…cn provide the binary
encoding of index i. The content of the source register is copied into the destination Rj whenever
inRj and inRd both hold 1.

The advantage of this schema with respect to the previous one is the number of needed gates (much
less MUXs here!). The price to be paid is that in this way we loose the possibility of having parallel
transfers, that by contrast was enabled by the original schema (the one with a MUX for every
destination).

4b. Variable source and destination: many-to-many interconnection through a bus

If we accept non-parallel transfers, we can obtain an even cheaper interconnection by using a bus
(i.e. a series of bit lines) and the use of tri-state buffers:

The interconnection is realized by using k lines (where k is the number of FFs of the registers): the
bus. Registers’ inputs directly come from the bus, whereas their outputs go into the bus by oassing
through a (series of k) tri-state buffer. To copy the content of Ri into Rj we have to set line outRi of
the i-th tri-state buffer and line inRj of the j-th register.

inRd

R1

R2

RN

c1…cn

inR1

inR2

inRN

inRN inR1 inR2

daRN daR2 daR1

RN R2 R1

4c. Many-to-many: Mesh vs bus

Within the microprocessor, we have a set of few very quick registers realized with expensive
technology, whereas the central memory is made up by milions of registers realized with a much
cheaper technology. Microprocessor’s registers are interconnected through a mesh, whereas such
registers are interconnected with the central memory through a bus. Buses are largely used in a
computer because they allow to use a small number of point-to-point connections for
interconnectiong all registers of the machine.

III. Design of interconnection nets

Designing an interconnection net requires solving two main issues:

- decide the needed links for the desired transfers;
- design the circuits that correctly activate the control lines, according to the specifications.

Let us see a few examples on how this is done in practice.

Example 1. Let Rs be a source register and let Rd0, Rd1, Rd2 and Rd3 be four destination registers.
Design the interconnection net such that, when in_Rd holds 1, the content of Rs is moved into Rdj,
where j is given by the binary number resulting from the two less signifying bits of Rs.

Solution
This is a one-to-many interconnection whose schema is:

Notice that the control signals of the DEC are the two LSBs of the source register, as specified by
the text.

Example 2. Design an inteconnection between R0, R1 and R2 such that:

• R0 is moved into R1 if R1 > R2;
• R1 is moved into R2 if R0 < R1;
• R2 is moved into R0 if R0 = R1 | R2 (where | denotes the bitwise OR).

inRd

c1

c0

Rd0 Rs

Rd1

Rd2

Rd3

Solution
The interconnection net is obtained by joining three one-to-one transfers:

We then need to design the circuit that computes the signals inR0, inR1 and inR2. The conditions for
the first two interconnections suggest to use two comparators:

For in_R0, let us observe that the bitwise OR is simply performed as follows:

By using it, we have:

inR0

R0

R1

R2

inR1 inR2

=

>

>
=

inR0

R0

R1

R2

 COMP COMP

Example 3 (A simplified ALU). Design a many-to-many interconnection net that allows to move
the content of two among N k-bits registers R1...RN to one between M computing modules (with
two inputs) E1....EM.
Draw the black-box schema with all control circuits necessary for:

• selecting 2 among the N source registers (i.e., the operands);
• applying to them the functionality of one of the M computing modules.

Then, draw the detailed schema (up-to the level of FFs and logic gates) when we have:
• 3 source registers that store 2 bits (N=3, k=2), with FFs of kind JK;
• 2 computing modules (M=2), one of which is an adder and the other one
 that computes the bitwise AND of the input operators.

Solution
The general schema is the following:

We have a (set of k) MUX for every operand in input to the computing modules: MUX1 selects the
first operand among the N source registers through the control signals c1….cn; MUX2 selects the
second operand through the control signals cn+1…c2n, where, as usual, n is the upper integer part of
log2 N. Every computing module has a control signal in_Ej that enables reading and computing the
operands previously stored in the input lines of module j.

The detailed schema for the specific case required has 4 MUXs (with single-bit lines):
- mux0 selects the LSB of the first operand;
- mux1 selects the MSB of the first operand;
- mux2 selects the LSB of the second operand;
- mux3 selects the MSB of the second operand.
Hence, mux0 and mux1, since they must both select the first operand, are both controlled by the
same lines c1 and c2; similalry, mux2 and mux3, since they must both select the second operand, are
both controlled by the same lines c3 and c4. The operation is chosen by setting line add
(corresponding to inE1) and and (corresponding to inE2). Finally, carry is used to signal a possible
final carry of the adder.

The resulting circuit is the following:

R1

R2

RN

mux1

c1…cn

mux2

cn+1…c2n

E1

E2

EM

inE1

inE2

inEM

add

mux3

mux2

mux1

mux0

R1

J11
K11

J12
K12

R2

J21
K21

J22
K22

R3

J31
K31

J32
K32

c1 c2

c3 c4

c1 c2

c3 c4

ADD0

ADD1

and

carry

