Exercises on the topics of class 9

Exercises with solutions

Ex. 1. Build the truth table for the following BE:

$$
(x \oplus(y \operatorname{NOR} \bar{z})) \operatorname{NAND}(x+y z)
$$

SOLUTION:

| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | y | z | \bar{z} | $y N O R \bar{z}$ | $x \oplus(y N O R \bar{z})$ | $y z$ | $x+y z$ | $x \oplus(y$ NOR $z) N A N D(x+y z)$ |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |

Ex. 2. Check the following equality, by using the truth tables:

$$
\bar{x}+z(\bar{x}+y)=\bar{x}+z y
$$

Then, write the dual and the complementary versions of the given equality.
SOLUTION:
The truth table of the two expressions is:

x	y	z	\bar{x}	$z y$	$\bar{x}+z y$	\bar{x}	$\bar{x}+y$	$\bar{z}(x+y)$	$\bar{x}+z(\bar{x}+y)$
0	0	0	1	0	1	1	1	0	1
0	0	1	1	0	1	1	1	1	1
0	1	0	1	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0
1	1	1	0	1	1	0	1	1	1

The dual equality is $\quad \bar{x}(z+\bar{x} y)=\bar{x}(z+y)$
The complementary equality is $x(\bar{z}+x \bar{y})=x(\bar{z}+\bar{y})$

Ex. 3. Let $\mathrm{y}=\mathrm{x} 1 \mathrm{x} 0+\underline{\mathrm{x} 1} \underline{\mathrm{x} 0}$. Express y in ALL-NAND form.
SOLUTION:
By using De Morgan and the definition of negation with NAND, we have

$$
\begin{aligned}
\mathrm{x} 1 \mathrm{x} 0+\underline{\mathrm{x} 1} \underline{\mathrm{x} 0} 0 & =\mathrm{x} 1 \mathrm{x} 0+(\mathrm{x} 1+\mathrm{x} 0) \\
& =(\mathrm{x} 1 \mathrm{x} 0) \text { NAND } \mathrm{x} 1+\mathrm{x} 0) \\
& =(\mathrm{x} 1 \text { NAND } \mathrm{x} 0) \text { NAND }(\underline{\mathrm{x} 1} \text { NAND } \underline{\mathrm{x} 0}) \\
& =(\mathrm{x} 1 \text { NAND } \mathrm{x} 0) \text { NAND }((\mathrm{x} 1 \text { NAND } \mathrm{x} 1) \text { NAND }(\mathrm{x} 0 \text { NAND } \mathrm{x} 0))
\end{aligned}
$$

Exercises without solutions

Ex. 1. Consider the following BE: $\quad x+\bar{z}(x+\bar{y}(x+z))$.
Build up its truth table, its dual and its complemetary expressions.
Ex. 2. Consider the following BEs, where \oplus denotes the XOR. Rewrite them first in form allNAND and then in form all-NOR:

$$
\begin{aligned}
& \mathrm{X} \oplus(\mathrm{Y} \oplus \mathrm{Z}) \\
& \mathrm{XY}+\mathrm{XZ}+\mathrm{YZ}
\end{aligned}
$$

