Exercises on the topics of class 9

Exercises with solutions

Ex. 1. Build the truth table for the following BE:

 $(x \oplus (y \text{ NOR } z)) \text{ NAND } (x+yz)$

SOLUTION:

			_	_				
X	у	Ζ	Ζ	y NOR z	$x \oplus (y NOR z)$	yz	x+yz	$x \oplus (y \text{ NOR } z) \text{ NAND } (x+yz)$
0	0	0	1	0	0	0	0	1
0	0	1	0	1	1	0	0	1
0	1	0	1	0	0	0	0	1
0	1	1	0	0	0	1	1	1
1	0	0	1	0	1	0	1	0
1	0	1	0	1	0	0	1	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	1	1	0

Ex. 2. Check the following equality, by using the truth tables:

$$\overline{x + z(x + y)} = \overline{x + zy}$$

Then, write the dual and the complementary versions of the given equality.

SOLUTION:

The truth table of the two expressions is:

			_		_	_	_	_		
X	у	Ζ	X	zy	x + zy	X	x+y	z(x+y)	x+z(x+y)	
0	0	0	1	0	1	1	1	0	1	
0	0	1	1	0	1	1	1	1	1	
0	1	0	1	0	1	1	1	0	1	
0	1	1	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	1	0	0	
1	1	1	0	1	1	0	1	1	1	

The dual equality is $\overline{x(z+xy)} = \overline{x(z+y)}$

The complementary equality is $x(\overline{z} + x\overline{y}) = x(\overline{z} + \overline{y})$

Ex. 3. Let $y = x1 x0 + \underline{x1} \underline{x0}$. Express y in ALL-NAND form.

SOLUTION:

By using De Morgan and the definition of negation with NAND, we have

 $x1 x0 + \underline{x1 x0} = x1 x0 + (\underline{x1 + x0})$ = (<u>x1 x0</u>) NAND (x1 + x0) = (x1 NAND x0) NAND (<u>x1 NAND x0</u>) = (x1 NAND x0) NAND ((x1 NAND x1) NAND (x0 NAND x0))

Exercises without solutions

Ex. 1. Consider the following BE: x + z(x + y(x + z)). Build up its truth table, its dual and its complemetary expressions.

Ex. 2. Consider the following BEs, where \oplus denotes the XOR. Rewrite them first in form all-NAND and then in form all-NOR:

 $X \oplus (Y \oplus Z)$ XY + XZ + YZ