Exercises on the topics of class 4

Exercises with solutions

Ex 1. Turn in base 2, by using the base complement format, the decimal numbers 104 e 57, by using 8 bit for the representation. Then, calculate $104-57$ in base 2 .

SOLUTION:

104: $2=52$ rem. 0
52:2 = 26 rem. $0 \quad 26: 2=13$ rem. 0
$13: 2=6$ rem. $1 \quad 6: 2=3$ rem. $0 \quad 3: 2=1$ rem. $1 \quad 1: 2=0$ rem. 1
Hence, 104_{10} is represented (by using 8 bits 2 -compl) 01101000.

```
57:2 = 28 rem. 1 28:2=14 rem. 0 14:2=7 rem. 0
7:2 = 3 rem. 1 3:2=1 rem. 1 1:2 = 0 rem. 1
Hence, \(57_{10}\) is represented as 00111001 .
```

In 8 bits 2 -compl, -57 becomes 11000111 , by first complementing bit-by-bit (11000110) and then adding 1 . By now summing such a number to 01101000 , we obtain 00101111.

Ex. 2. Turn -4720_{8} by using the 16 bits 2 -complement format.

SOLUTION:

The absolute value of the given number represented with 16 bits is 0000100111010000
Its bitwise complement is 1111011000101111 and hence the 2 -compl is
1111011000110000

Ex. 3. Consider 4521_{6}. Turn it in base 2 and then subtract to the obtained number the binary representation of the hexadecimal number 5AE. Work with 12 bits.

SOLUTION:
Let's turn $4521{ }_{6}$ in base 10 :
$4521_{6}=4 \times 6^{3}+5 \times 6^{2}+2 \times 6+1 \times 1=1057$
This number in base 2 is 010000100001 . The hexadecimal number 5 AE turned in base 2 is 010110101110 , whose 2 -compl is 101001010010 . Hence, the required difference (obtained by summing the first one to the 2 -complof the secondo ne) is:

$$
\begin{aligned}
& 010000100001+ \\
& 101001010010=
\end{aligned}
$$

Exercises without solutions

Ex. 1.

a) Write in 2 -compl the decimal number - 177, by using 8 bits.
b) Will the result change by having 7 bits?
c) By having 9 bits, how will the result change?

Ex. 2. Given $\mathrm{A}=-24_{10}$ and $\mathrm{B}=37_{10}$, turn them in the 2 -compl format and calculate both $\mathrm{A}+\mathrm{B}$ and A-B in such a format, by checking the results (turn them back in base 10).
Remark. Work in a format with the minimum number of bits that make $\mathrm{A}, \mathrm{B}, \mathrm{A}+\mathrm{B}$ and $\mathrm{A}-\mathrm{B}$ all representable.

