
Exercises	on	the	topics	of	class	25	
	

	
Exercises	with	solutions	
	
Ex.	1.	Design	a	circuit	that,	given	four	source	registers	Si		and	four	destination	registers	Di		(for	
i	=	1,…,4),	allows	the	following	parallel	transfers:	

(a) S1	à	D1,	D2,	D4	 			and	 S2	à	D3	
(b) S3	à	D3	 	and				S4	à	D4	

If	we	would	identify	D1	with	D3	and	D2	with	D4	(that	is,	the	new	circuit	only	has	destinations	
D1	and	D2),	would	the	above	transfers	be	still	legal?	Why?	
	
SOLUTION:	
	
First	of	all,	let’s	observe	that	D1	and	D2	only	receive	from	S1,	whereas	D3	and	D4	receive	from	
either	 S2	 or	 S3,	 and	 from	 either	 S1	 or	 S4,	 respectively.	Hence,	we	 can	 use	 a	 point-to-point	
interconnection	 among	 S1	 and	 D1,	 and	 among	 S1	 and	 D2;	 by	 contrast,	 D3	 and	 D4	 would	
require	 a	 MUX	 2-to-1	 to	 select	 their	 input.	 According	 to	 the	 operation	 requested	 (that	 is	
specified	 by	 a	 bit	 op),	 the	 control	 line	 will	 activate	 or	 not	 D1	 and	 D2	 for	 writing	 (op	 =	 0	
activates	 them,	 op	 =	 1	 does	 not;	 hence,	 in_D1	and	 in_D2	are	 the	 negation	 of	 op).	 Instead,	
registers	D3	and	D4	are	always	enabled	 in	writing	(in_D3	and	 in_D4	always	hold	1);	what	 is	
needed	is	a	proper	selection	of	the	source	register	for	them	(that	is,	a	control	bit	for	the	two	
MUXs):	when	op	=	0,	it	must	select	S2	for	D3	and	S1	for	D4;	when	op	=	1,	it	must	select	S3	for	
D3	and	S4	for	D4.	So,	for	both	MUXs	the	control	signal	is	the	bit	op.		
To	conclude,	the	circuit	is:		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
If	we	now	change	the	net	to	have	just	D1	and	D2	as	destination	(with	D3	that	become	s	D1	and	
D4	that	becomes	D2),	the	transfer	(b)	would	still	be	legal,	whereas	transfer	(a)	no:	indeed,	in	
the	 first	 case	 no	 conflict	 arises	 since	 sources	 and	 destinations	 are	 disjoint,	 whereas	 in	 the	
second	 case	 there	 is	 a	 conflict	 on	D1	 that	 should	 simultaneously	 receive	 the	datum	coming	
from	S1	and	S2.	

	
S1	

	
S2	

	
S3	

	
S4	

M
U
X

op	

D
1	

D
2	

D
3	

D
4	

op	

op	

	
1	

	
1	

M
U
X

	op	

	
S2	
	
S3	

S1	
	
S4	

S1	
	
	
	
S1	

Ex.	2.	 	Design	an	interconnection	net	with	4	source	registers	S0,	S1,	S2,	S3	and	4	destination	
registers	D0,	D1,	D2,	D3	in	which	the	following	transfers	can	be	done	in	parallel:	if	the	content	
of	Si	 is	even	 then	Si	 is	 copied	 into	Di;	otherwise	S(i+1)	mod	4	 is	 copied	 into	Di.	Moreover,	Di	 is	
enabled	 to	 writing	 if	 and	 only	 if	 	 Si	 +	 S(i+1)	 mod	 4	 is	 odd.	 How	 can	 we	 realize	 the	 same	
interconnection	(in	a	cheaper	way)	if	the	transfers	should	not	happen	in	parallel?	
	
SOLUTION:	
	
The	 interconnection	 net	 is	 a	many-to-many	 one,	with	 a	MUX	 for	 every	 destination	 register	
that	 selects	 one	 among	 the	 two	 possible	 inputs	 Si	 and	 S(i+1)	mod	4		 according	 to	 the	 parity	 of		
register	 Si;	 this	 requires	 just	 one	 single	 control	 signal.	 To	 check	 whether	 the	 content	 of	 a	
register	is	even	or	odd,	we	just	need	to	check	its	less	signifying	bit:	if	0,	then	the	content	of	Si	
is	 even,	otherwise	 its	 is	odd.	The	value	of	 the	 less	 signifying	bit	 is	 then	used	as	 the	 control	
signal	for	the	MUX.	Signal	in_Di	is	simply	obtained	by	noting	that	the	sum	of	two	numbers	is	
odd	 if	 and	 only	 if	 exactly	 one	 of	 the	 two	 summands	 is	 odd;	 hence,	 this	 can	 be	 done	 by	
performing	the	XOR	among	the	 less	signifying	bits	of	Si	and	S(i+1)	mod	4.	The	needed	transfers	
are	then:	
D0		 is	enabled	only	if	S0+S1	is	odd;	it	receives	S0	if	S0	is	even,	S1	if	S0	is	odd;	
D1	 is	enabled	only	if	S1+S2	is	odd;	it	receives	S1	if	S1	is	even,	S2	if	S1	is	odd;	
D2		 is	enabled	only	if	S2+S3	is	odd;	it	receives	S2	if	S2	is	even,	S3	if	S2	is	odd;	
D3		 is	enabled	only	if	S3+S0	is	odd;	it	receives	S3	if	S3	is	even,	S0	if	S3	is	odd.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
Without	parallel	transfers,	we	can	use	a	bus.	However,	we	must	ensure	the	exclusive	access	to	
the	bus,	so	we	must	select	which	transfer	has	to	be	performed	(via	2	input	signals,	call	them	

in_D3	

S3	

S2	

S1	

S0	

D3	

D0	

D1	

D2	

in_D0	

in_D1	

in_D2	

XOR	

XOR	

XOR	

XOR	

a1	and	a0,	with	00	enabling	the	first	transfer,	01	the	second,	10	the	third,	and	11	the	fourth)	
or	sequentialize	the	transfers	(by	using	a	counter	modulo	4,	that	produces	the	bits	a1	and	a0).	
In	both	cases,	the	interconnection	is	the	following	one:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
where	(we	denote	with	li	the	LSB	of	Si)	
	
	 	 inD0	=	𝑎1	𝑎0(𝑙0⨁𝑙1)	 fromS0	=	𝑎1	𝑎0	𝑙0 	+ 	𝑎1	𝑎0	𝑙3		
	 	 inD1	=	𝑎1	𝑎0(𝑙1⨁𝑙2)	 fromS1	=	𝑎1	𝑎0	𝑙1 	+	𝑎1	𝑎0	𝑙0	
	 	 inD2	=	𝑎1	𝑎0(𝑙2⨁𝑙3)	 fromS2	=	𝑎1	𝑎0	𝑙2 	+	𝑎1	𝑎0	𝑙1	
	 	 inD3	=	𝑎1	𝑎0(𝑙3⨁𝑙0)	 fromS3	=	𝑎1	𝑎0	𝑙3 	+ 	𝑎1	𝑎0	𝑙2	
	
	
	
	
Ex.	3.	Registers	R1,	R2,	R3	and	R4	are	connected	with	a	bus.	If	signal	write	is	1,	the	following	
transfers	must	be	sequentially	performed:	R1	à	R2,	R2	à	R3,	R3	à	R4	e	R4	à	R1.	Tenendo	
conto	 che	 utilizzando	un	bus	 non	 è	 possibile	 eseguire	 trasferimenti	 in	 parallelo,	 progettare	
quanto	 necessario	 a	 produrre	 tutti	 i	 segnali	 di	 controllo	 e	 la	 loro	 temporizzazione	 fino	 al	
dettaglio	di	porte	logiche	e	flip-flop	(N.B.	i	registri	non	vanno	dettagliati).	
	
	
SOLUTION:	
	
Since	 the	bus	doesn’t	 allow	parallel	 transfers,	whenever	write=1	we	have	 to	perform	 them	
one	after	the	other,	by	logically	performing	R1	-->	R2	,	R2	-->	R3	,	R3	-->	R4		and	R4	-->	R1	in	

fromS0	

	
D0	
	

	
D3	

	
D2	

	
D1	

	
S0	
	

	
S3	

	
S2	

	
S1	

fromS1	

fromS2	

fromS3	

inD0	

inD1	

inD2	

inD3	

some	sequence.	In	doing	this,	we	must	ensure	that	the	previous	contents	of	the	registers	are	
not	lost	(e.g.,	if	we	first	move	R1	into	R2	and	then	R2	into	R3,	we	have	to	somehow	save	the	
previous	value	of	R2	 to	be	moved	 into	R3).	To	 this	 latter	 aim,	we	use	a	 temporary	 register	
Rtmp	and	perform	the	following	sequence	of	transfers:	R4	à	Rtmp	(so	that	the	content	of	R4	
is	 saved),	R3	à	R4,	R2	à	R3,	R1	à	R2	and	Rtmp	à	R1.	Then,	we	use	a	 counter	mod	5	 to	
sequentially	enable	such	five	transfers,	by	using	the	first	5	outputs	of	a	3-to-8	decoder.	Such	
outputs	control	the	writing	signals	inR	and	the	control	outR	of	the	tri-state	buffers:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

inR1
	

outR1	

							
Counter	mod	5	
	

outR2	

outR3	

outR4	

outRtmp	

inR2
	

inR3	

inR4	

inRtmp		
																	000	
	
	
	
	
	
																	001	
	
	
DEC 3-to-8

 010

 011

 100

clock	

							write	

	
Rtmp	
	

	
R2	

	
R3	

	
R4	

	
R1	

Ex.	4.	Let’s	have	two	16-bits	source	registers	S0	and	S1	that	contain	floating	point	numbers	in	
the	IEEE	half-precision	standard.	We	also	have	two	10-bits	destination	registers	D0	and	D1.	
Design	the	following	interconnection:	

• If	 the	 integer	part	of	 the	number	stored	 in	S0	 is	even,	 then	copy	 the	mantissa	of	 the	
number	stored	in		Si		into		Di	

• Otherwise	copy	the	mantissa	of		Si	into	D(i+1)	MOD	2	
REMARK:	it	is	not	required	that	the	mantissa	of	the	number	in	S0	to	be	even,	but	it	must	be	
even	the	integer	part	of	the	number	itself!	
	
SOLUTION:	
	
Source	registers	can	be	(logically)	divided	as	follows:	
	
	
	
	
where b0 is the sign bit, b1/…/b5 give the (biased) exponent and b6/../b15 are the (normalized)
mantissa. Since this is a many-to-many interconnection, its structure is the following:
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
where	 the	 thick	 lines	 represent	 the	 10	 bits	 of	 the	mantissas.	 As	 usual,	 the	MUXs	 select	 the	
upper	input	if	the	control	signal	is	0,	the	lower	input	otherwise.	

b0				b1	 …	 b5							b6	 										…	 b15	

b0	
	
b1	
…	
b5	
	
b6	
…	
b15	
	

S0	

b’0	
	

b’1	
…	
b’5	
	

b’6	
…	
b’15	
	

S1	

	
d0	
	
…	
	
d9	

D0	

	
d’0	
	
…	
	

d’9	

D1	

	
	
C	

b1	
	

	
…	
	
	

b15	

M	
U	
X	
	
2-to-
1	

M	
U	
X	
	
2-to-
1	

We	are	now	left	with	the	control	circuit	C.	To	design	it,	first	recall	that	a	number	is	even	if	and	
only	if	 its	LBS	is	0.	With	this	in	mind,	the	easiest	way	to	implement	the	behaviour	of	C	is	by	
considering	b1…b5	–	01111	(as	a	number	in	2-complement	with	5	bits);	if	it	is	

• 00000,	then	the	number	is	1,b6…b15	and	so	the	LSB	of	its	integer	part	is	1;	
• 00001,	then	the	number	is	1b6,b7…b15	and	so	the	LSB	of	its	integer	part	is	b6;	
• 00010,	then	the	number	is	1b6b7,b8…b15	and	so	the	LSB	of	its	integer	part	is	b7;	
• …	
• 01001,	then	the	number	is	1b6…b15	and	so	the	LSB	of	its	integer	part	is	b15;	
• 01010,	then	the	number	is	1b6…b150	and	so	its	LSB	is	0;	
• …	
• 01111,	then	the	number	is	1b6…b15000000	and	so	its	LSB	is	0;	
• 10000,	then	the	number	is		0,0…01b6…b15	and	so	its	integer	part	is	0;	
• …	
• 11110,	then	the	number	is		0,01b6…b15	and	so	its	integer	part	is	0;	
• 11111,	then	the	number	is		0,1b6…b15	and	so	its	integer	part	is	0.	

So,	we	can	use	the	result	of	the	difference	as	the	5	control	lines	of	a	32-to-1	MUX	that	provides	
the	LSB	of	the	integer	part	of	the	number	stored	in	S0:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
where	here	 the	 thick	 lines	represent	numbers	of	5	bits.	This	circuit	gives	 in	output	0	 if	and	
only	if	the	integer	part	of	the	number	stored	in	S0	is	even,	as	desired.	
	
	
	
Exercises	without	solutions	
	
Ex.	 1.	 Given	 3	 source	 registers	 R0,	 R1	 and	 R2	 and	 a	 destination	 register	 R'	 design	 the	
interconnection	 net	 controlled	 by	 the	 signals	 inR'	 and	 op	 that	 can	 perform	 the	 following		
trasfers:	
if		inR'	=	0	,		R'	doesn’t	change;	
if		inR’	=	1	and	op	=	0	,	R0	is	copied	into	R';	
if		inR’	=	1	and	op	=	1	,	in	R'	we	store	the	bit-wise	exclusive	OR	of	the	content	of	R1	and	R2.	
	
	

M	
U	
X	
	
32-
to-1	

1	
b6	
b7	
…	

b15	
0	
…	
0	

SUB	

b1…b5									01111	

Ex.	2.	Let’s	have	4	2-bits	source	registers		S1	,	…	,	S4	 	and	6	3-bits	destination	registers	D1	,	…	,	
D6.	The	MSB	of		Di		(that	we	denote	with		di3)	is	a	relevance	indicator	of	the	info	stored	in	the	
register;	 in	 particular,	 di3	=	0	 denotes	 a	 non-relevant	 info	 (that	 can	 hence	 be	 overwritten),	
whereas	di3	=	1		denotes	a	relevant	info	(that	cannot	be	canceled).	
Design	the	circuit	that	allows	the	following	trasfers:	

a) S1	®		D3	,	D4		
b) S2	®		D1	,	D2	
c) S3	®		D5	
d) S4	®		D6	

where	Si	®		Dk	 	denotes	that	the	transfer	yields	a	relevant	storing		into	Dk	 	(that	is,	after	the	
transfer,	we	must	have		dk3	=	1),	always	provided	that		dk3		was	not	already	at	1	(in	this	case,	
the	transfer		Si	®		Dk		cannot	happen).	Moreover,	if	the	transfer	from	Si	to		Dk	(relevant	or	not)	
happens,	after	 it	we	shall	have	 	dk1	=	si1	 	and	 	dk2	=	si2	 (i.e.,	 the	two	LSBs	of	Dk	 	store	the	info	
present	in	Si).	Finally	assume	that	at	the	beginning	the	destination	registers	have	all	their	bits	
at	0.	
	
	
Ex.	 3.	 Given	 th	 source	 registers	 A	 and	 B	 that	 contain	 values	 in	 the	 2-complement	
representation,	a	destination	register		R,	and	two	control	signals	c1c0,	design	the	circuit	such	
that:	
-	if	c1c0=(0,0)	copies	into	R	the	successor	of	B;		
-	if	c1c0=(0,1)	copies	into	R	the	maximum	between	(the	values	stored	in)	A	and	B;	
-	if	c1c0=(1,0)	copies	into	R	the	result	of	the	sum	between	A	and	B;	
-	if	c1c0=(1,1)	copies	into	R	the	predecessor	of	A.	
	
	
	

