Exercises on the topics of class 21

Exercises with solutions

Ex. 1. Given the following automaton with starting state S0:

Minimize it and then, from the minimal automaton, derive the corresponding sequential net whose combinatorial part is done with a PLA and the sequential part with FFs of kind JK.

SOLUTION:

Notice that S7 is unreachable from S0 and so can be directly deleted. The triangular table is:

The resulting states are $\mathrm{T} 0=\{\mathrm{S} 0, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 6\}, \mathrm{T} 1=\{\mathrm{S} 1, \mathrm{~S} 5\}, \mathrm{T} 2=\{\mathrm{S} 2\}$, and so the minimal automaton is:

	$\mathbf{0}$	$\mathbf{1}$
T0	$\mathrm{T} 1 / 0$	$\mathrm{~T} 0 / 0$
T1	$\mathrm{T} 1 / 0$	$\mathrm{~T} 2 / 1$
T2	$\mathrm{T} 0 / 1$	$\mathrm{~T} 0 / 0$

This automaton yields the following future states table (with the encoding Q1Q0 $=00$ for T 0 , $\mathrm{Q} 1 \mathrm{Q} 0=01$ for T 1 and $\mathrm{Q} 1 \mathrm{Q} 0=10$ for T 2) :

| \mathbf{X} | $\mathbf{Q 1}$ | $\mathbf{Q 0}$ | $\mathbf{Q 1}$ | $\mathbf{Q 0} \quad \mathbf{(t + 1)}$ | \mathbf{z} | $\mathbf{J 1}$ | $\mathbf{K 1}$ | $\mathbf{J 0}$ | $\mathbf{K 0}$ |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | - | 1 | - |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | - | - | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | - | 1 | 0 | - |
| 0 | 1 | 1 | - | - | - | - | - | - | - |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | - |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | - | - | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | - | 1 | 0 | - |
| 1 | 1 | 1 | - | - | - | - | - | - | - |

With Karnaugh maps, we obtain the minimal expressions:

$$
\mathrm{Z}=\underline{\mathrm{x}} \mathrm{Q} 1+\mathrm{x} \mathrm{Q} 0 \quad \mathrm{~J} 1=\mathrm{x} Q 0 \quad \mathrm{~K} 1=1 \quad \mathrm{~J} 0=\underline{\mathrm{x}} \mathrm{Q} 1 \quad \mathrm{~K} 0=\mathrm{x}
$$

and so the circuit is:

Ex.2. Design a circuit that receives two binary strings and gives in output 1 if and only if the sum of the values associated to the input strings received so far is a multiple of 4 . Assume that the first received digit is the most signifying one of the string itselfstringa stessa. For example:

Input: 100100...
100010...

Ouput: 011000...
Work with the minimal automaton and with the resulting minimal expressions (obtained with gates NAND, NOR, XOR and NXOR, if possible). Use flip-flops of kind JK and don't use any module for the sum.

SOLUTION:

States are associated to the last two bits of the binary representation of the sum of the values received so far. Hence:

Its tabular representation is

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$
S0	$\mathrm{S} 0 / 1$	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 2 / 0$
S1	$\mathrm{S} 2 / 0$	$\mathrm{~S} 3 / 0$	$\mathrm{~S} 3 / 0$	$\mathrm{~S} 0 / 1$
S2	$\mathrm{S} 0 / 1$	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 2 / 0$
S3	$\mathrm{S} 2 / 0$	$\mathrm{~S} 3 / 0$	$\mathrm{~S} 3 / 0$	$\mathrm{~S} 0 / 1$

We can easily see that it is minimizable as follows:

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$
T0	$\mathrm{T} 0 / 1$	$\mathrm{~T} 1 / 0$	$\mathrm{~T} 1 / 0$	$\mathrm{~T} 0 / 0$
T1	$\mathrm{T} 0 / 0$	$\mathrm{~T} 1 / 0$	$\mathrm{~T} 1 / 0$	$\mathrm{~T} 0 / 1$

Future states table is:

\mathbf{x}	\mathbf{y}	$\mathbf{Q}(\mathbf{t})$	$\mathbf{Q (t + 1)}$	\mathbf{z}	\mathbf{J}	\mathbf{K}
0	0	0	0	1	0	-
0	0	1	0	0	-	1
0	1	0	1	0	1	-
0	1	1	1	0	-	0
1	0	0	1	0	1	-
1	0	1	1	0	-	0
1	1	0	0	0	0	-
1	1	1	0	1	-	1

With the KMs, we have:

$$
z=\underline{x} y \underline{Q}+x y Q \quad J=\underline{x} y+x y \quad K=x y+\underline{x} y
$$

The last two expressions can be equivalently written as

$$
J=x \oplus y \quad K=x \otimes y
$$

From them, we obtain the final circuit.

Ex. 3. Design a sequential net that, given in input a binary string, gives in output 1 if and only if the number of 1s received so far is a multiple of 3. Use flip-flops of kind T. From this, draw the net that only uses flip-flops of kind JK (REMARK: you don't have to perform another systhesis!!)

SOLUTION:

The required automaton has to check whether the number n of the 1 s received so far is:

- $n=3 \cdot k$
- $n=3 \cdot k+1$
- $n=3 \cdot k+2$
for some k, and only in the first case return 1 . The first condition is S 0 , the second one is S 1 and the third one is S2. So, the automaton is

Let's encode S 0 as $\mathrm{Q} 1 \mathrm{Q} 0=00, \mathrm{~S} 1$ as $\mathrm{Q} 1 \mathrm{Q} 0=01$ and S 2 as $\mathrm{Q} 1 \mathrm{Q} 0=10$ (combination $\mathrm{Q} 1 \mathrm{Q} 0=$ 11 is not used).

By using KMs, we have that:

$$
\mathrm{z}=\overline{\mathrm{x}} \overline{\mathrm{Q} 1} \overline{\mathrm{Q}} 0+\mathrm{x} \mathrm{Q} 1 \quad \mathrm{~T} 0=\mathrm{x} \overline{\mathrm{Q} 1} \quad \mathrm{~T} 1=\mathrm{x}(\mathrm{Q} 0+\mathrm{Q} 1)
$$

REMARK: we can obtain the more compact expression $\overline{Q 0}(x \oplus \overline{Q 1})$ for z by considering both don't cares as 0!

From the BEs, we draw the circuit:

To replace FFs of kind T with FFs of kind JK, it suffices to notice that

Exercises without solutions

Ex.1. Design the sequential net that accepts sequences 100 and 111 by using flip-flops of kind D
a) with superpositions,
b) without superpositions.

Ex. 2 (this exercise can be done AFTER studying counters). Design the control circuit of a semaphore. It should work as follows:

- the semaphore keeps the green light on for 10 seconds;
- then, the green light is switched off and the yellow light is on for 6 seconds;
- then, the yellow ligth is switched off and the redo ne is on for 16 seconds;
- finally, the red light is switched off and start again with the green.

Assume to have a clock with frequency at 1 Herz (i.e., with one impulse every second). Use FFs of kind JK.

Ex. 3. Minimize the following sequential net:

(Hint: minimize the automaton associted to the circuit - this can be obtained from an analysis procedure - and from the minimal automaton you can derive the minimal sequential net).

