Exercises on the topic of class 20

Exercises with solutions

Ex. 1. Given the following sequential circuit:

Find the corresponding automaton, minimize it and describe its behavior at words. Assume that at the outset all FFs store 0 .

SOLUTION:

The BEs are:

$$
\mathrm{S}=\mathrm{Q} 1 \overline{\mathrm{x}} \quad \mathrm{R}=\mathrm{x} \quad \mathrm{~T}=\mathrm{x} \oplus \mathrm{Q} 0 \quad \mathrm{Z}=\mathrm{x} \mathrm{Q} 0
$$

And so the table of the future states is:

	$\begin{aligned} & \text { Q1 } \\ & \text { (} \mathrm{t}) \end{aligned}$			R t)		z (t)		
0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0
0	1	0	1	0	0	0	1	0
0	1	1	1	0	1	0	1	0
1	0	0	0	1	1	0	0	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	1	0	0	1
1	1	1	0	1	0	1	0	1

From it, the automaton table (whose states are, as usual, called S0 if Q1Q0 $=00, \mathrm{~S} 1$ if $01, \mathrm{~S} 2$ if 10 and S3 if 11), with initial state S0.

	0	$\mathbf{1}$
S0	$\mathrm{S} 0 / 0$	$\mathrm{~S} 1 / 0$
S1	$\mathrm{S} 0 / 0$	$\mathrm{~S} 1 / 1$
S2	$\mathrm{S} 2 / 0$	$\mathrm{~S} 1 / 0$
S3	$\mathrm{S} 2 / 0$	$\mathrm{~S} 1 / 1$

Let's first observe that S2 and S3 are unreachable when the starting state is S0; it is then easy to check that the remaining automaton is minimal and can be drawn as follows:

The automaton return 1 if it reads at least two ' 1 s ' in sequence.

Ex. 2. Analyze the following sequential circuit, by assuming that at the outset the FFs are set to $\mathrm{q} 2 \mathrm{q} 1 \mathrm{q} 0=110$.

SOLUTION:

The BEs associated to the inputs of the FFs and to the output of the circuit are:

$$
\begin{aligned}
& \mathrm{T} 0=\mathrm{x} \\
& \mathrm{~J} 1=\mathrm{x} \text { Q2 } \\
& \mathrm{K} 1=\mathrm{Q} 2 \\
& \mathrm{D} 2=\mathrm{Q} 0 \mathrm{Q} 1 \\
& \mathrm{z}=\mathrm{x} \text { Q2 }
\end{aligned}
$$

From them, we can build the future states table:

\boldsymbol{x} Q2 Q1 Q0	TO	J1 $\mathbf{K 1}$	$\boldsymbol{D 2}$	$\mathbf{Q 2}^{\prime} \mathbf{Q 1}^{\prime}$ Q0' $^{\prime}$	\boldsymbol{z}					
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	1	1	0	0	0	1	1	1	1
0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	1	0	0	0	1
0	1	1	0	0	0	1	0	0	0	0
0	1	1	1	0	0	1	1	1	0	1
1	0	0	0	1	0	0	0	0	0	1
1	0	0	1	1	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	1	1
1	0	1	1	1	0	0	1	1	1	0
1	1	0	0	1	1	1	0	0	1	1
1	1	0	1	1	1	1	0	0	1	0
1	1	1	0	1	1	1	0	0	0	1
1	1	1	1	1	1	1	1	1	0	0

Since the initial configuration is the one with Q2 Q1 Q0 $=110$, we obtain the following automaton (REMARK: some states are unreachable starting from 110; hence, they can be safely discarded):

	$\boldsymbol{0}$	$\mathbf{1}$
$\mathbf{1 1 0}$	$000 / 0$	$001 / 1$
$\mathbf{0 0 0}$	$000 / 0$	$001 / 0$
$\mathbf{0 0 1}$	$001 / 0$	$000 / 0$

We can notice that the automaton is not minimal: we can merge 000 and 001 , and obtain

	$\boldsymbol{0}$	$\mathbf{1}$
$\boldsymbol{S 0}$	$\mathrm{S} 1 / 0$	$\mathrm{~S} 1 / 1$
$\boldsymbol{S 1}$	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 1 / 0$

This circuit gives 1 upon reception of input sequences of the form 1000... 0

Exercises without solutions

Ex. 1. Analyze the following sequential circuit:

Ex. 2. Given the following circuit, analyze it by assuming that both FFs initially store 0 :

Ex. 3. Analyze the following circuit, whose FF initially stores 0 :

