Exercises on the Topics of class 11

Exercises with a solution

Ex. 1. Let us consider the following boolean functions $f(x, y, z, t)$ and $g(x, y, z, t)$ such that:

- f returns 1 if and only if the string xyzt contains an even number of 1 s ;
- g returns 1 if and only if the string xyzt, seen as an integer number, is divisible by 2.

For f and g give: the canonical forms (conjunctive and disjunctive), the minimal SOP and POS forms and finally a minimal boolean expression (obtained by using the NAND, NOR, XOR and XNOR gates)

SOLUTION:

The tabular representation of f and g is:

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{t}	\boldsymbol{f}	\boldsymbol{g}
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	0	1
1	1	1	1	1	0

Let's denote with mi and Mi (for $\mathrm{i}=0, \ldots, 15$) the minterm and the maxterm associated to the i-th row of the table. For example,

$$
\mathrm{m} 2=\bar{x} \cdot \bar{y} \cdot z \cdot \bar{t} \quad \text { and } \quad \mathrm{M} 2=x+y+\bar{z}+t
$$

With this formalism, the canonical forms are:
$\mathrm{FCD}(f)=\mathrm{m} 0+\mathrm{m} 3+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 9+\mathrm{m} 10+\mathrm{m} 12+\mathrm{m} 15$
$\mathrm{FCC}(f)=\mathrm{M} 1 \cdot \mathrm{M} 2 \cdot \mathrm{M} 4 \cdot \mathrm{M} 7 \cdot \mathrm{M} 8 \cdot \mathrm{M} 11 \cdot \mathrm{M} 13 \cdot \mathrm{M} 14$
$\mathrm{FCD}(g)=\mathrm{m} 0+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 6+\mathrm{m} 8+\mathrm{m} 10+\mathrm{m} 12+\mathrm{m} 14$
$\operatorname{FCC}(g)=\mathrm{M} 1 \cdot \mathrm{M} 3 \cdot \mathrm{M} 5 \cdot \mathrm{M} 7 \cdot \mathrm{M} 9 \cdot \mathrm{M} 11 \cdot \mathrm{M} 13 \cdot \mathrm{M} 15$

For the minimal normal forms, we can easily check (by writing down the KM) that the minimal SOP and POS for f are the canonical forms. For g we have that:

$x y^{z t}$	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

and so $\operatorname{minSOP}(g)=\bar{t}$. For the minPOS, we can use g 's KM and cover the 0 s or observing that

$$
\operatorname{minPOS}(g)=\operatorname{minPOS}(\neg g)
$$

that is, we have to cover the 1 s of the following map:

$x y^{z t}$	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

In both cases, we obtain that $\operatorname{minPOS}(g)=\bar{t}$.
Finally, for the minimal BEs, it is easy to see that the minimal expression for g is the minSOP (that coincides with the minPOS). For f, by using XORs and NXORs (respectively denoted by \oplus and $\otimes)$ and by properly factoring the CCF, we have that

```
FCC(f)=(x+y+z+t) (x+y+\underline{z}+t)(x+y+z+t)(x+y+z+t)(\underline{x}+y+z+t)(\underline{x}+y+\underline{z}+\underline{t})(\underline{x}+\underline{y}+z+\underline{t})(\underline{x}+\underline{y}+\underline{z}+t)
    =(x+y+(z+\underline{t})(\underline{z}+t))(x+y+(z+t)(\underline{z}+\underline{t}))(\underline{x}+y+(z+t)(\underline{z}+\underline{t}))(\underline{x}+\underline{y}+(z+\underline{t})(\underline{z}+t))
    =(x+y+(z\otimest))(x+y+(z\oplust))(\underline{x}+y+(z\oplust))(\underline{x}+y+(z\otimest))
    = ((x+y)(\underline{x}+y)+(z\otimest))((x+y)(\underline{x}+y)+(z\oplust))
    = ((x\oplusy)+(z\otimest)) ((x\otimesy)+(z\oplust))
    = (x\oplusy)\otimes(z\oplust)
```

Indeed, it is easy to check that $(a+\underline{b})(\underline{a}+b)=(a \otimes b)$ and $(a+b)(\underline{a}+\underline{b})=(a \oplus b)$. For example,

$$
(a+\bar{b})(\bar{a}+b)=\overline{\overline{(a+\bar{b})}+\overline{(\bar{a}+b)}}=\overline{\bar{a} b+a \bar{b}}=\overline{a \oplus b}=a \otimes b
$$

Hence,

$$
\operatorname{minEB}(f)=(x \oplus y) \otimes(z \oplus t)
$$

Exercises without solutions

Ex. 1. Let us consider the function that returns 1 only when its (4 bit) input represents an integer in 2's complement that is a multiple of 3. Do not consider 1000 (i.e., on that sequence the function is undefined). Give a minimal SOP and POS associated to this function.

Ex. 2. Find the minimal SOP associated to the expression $(x \oplus(y$ NAND $z)$) NOR \bar{x}

