Exercises on the Topics of class 11

Exercises with a solution

Ex. 1. Let us consider the following boolean functions f(x, y, z, t) and g(x, y, z, t) such that:

- *f* returns 1 if and only if the string *xyzt* contains an even number of 1s;
- *g* returns 1 if and only if the string *xyzt*, seen as an integer number, is divisible by 2. For *f* and *g* give: the canonical forms (conjunctive and disjunctive), the minimal SOP and POS forms and finally a minimal boolean expression (obtained by using the NAND, NOR, XOR and XNOR gates)

SOLUTION:

The tabular representation of f and g is:

	X	y	Z	t	f	\boldsymbol{g}
()	0	0	0	1	1
()	0	0	1	0	0
()	0	1	0	0	1
()	0	1	1	1	0
()	1	0	0	0	1
()	1	0	1	1	0
()	1	1	0	1	1
()	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	0	1	1	0
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	1	1
1	1	1	0	1	0	0
1	1	1	1	0	0	1
1	1	1	1	1	1	0

Let's denote with $\,$ mi and $\,$ Mi (for i=0,...,15) the minterm and the maxterm associated to the i-th row of the table. For example,

$$m2 = x \cdot y \cdot z \cdot t$$
 and $M2 = x + y + z + t$

With this formalism, the canonical forms are:

$$FCD(f) = m0 + m3 + m5 + m6 + m9 + m10 + m12 + m15$$

 $FCC(f) = M1 \cdot M2 \cdot M4 \cdot M7 \cdot M8 \cdot M11 \cdot M13 \cdot M14$

FCD(
$$g$$
) = m0 + m2 + m4 + m6 + m8 + m10 + m12 + m14
FCC(g) = M1 · M3 · M5 · M7 · M9 · M11 · M13 · M15

For the minimal normal forms, we can easily check (by writing down the KM) that the minimal SOP and POS for f are the canonical forms. For g we have that:

xy zt	00	01	11	10	
00	1	0	0	1	
01	1	0	0	1	
11	1	0	0	1	
10	1	0	0	1	

and so $\min SOP(g) = \overline{t}$. For the $\min POS$, we can use g's KM and cover the 0s or observing that

$$\min POS(g) = \min POS(\neg g)$$

that is, we have to cover the 1s of the following map:

xy zt	00	01	11	10
00	0	1	1	0
00 01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

In both cases, we obtain that minPOS(g) = t.

Finally, for the minimal BEs, it is easy to see that the minimal expression for g is the minSOP (that coincides with the minPOS). For f, by using XORs and NXORs (respectively denoted by \oplus and \otimes) and by properly factoring the CCF, we have that

$$\begin{aligned} & \text{FCC}(f) = (x + y + z + \underline{t}) \ (x + y + \underline{z} + t) \ (x + y + z + \underline{t}) \ (\underline{x} + y + z + \underline{t})$$

Indeed, it is easy to check that $(a+\underline{b})(\underline{a}+b)=(a\otimes b)$ and $(a+b)(\underline{a}+\underline{b})=(a\oplus b)$. For example,

$$(a+\overline{b})(\overline{a}+b) = \overline{(\overline{a+\overline{b})} + \overline{(\overline{a}+b)}} = \overline{ab+a\overline{b}} = \overline{a \oplus b} = a \otimes b$$

Hence,

$$minEB(f) = (x \oplus y) \otimes (z \oplus t)$$

Exercises without solutions

Ex. 1. Let us consider the function that returns 1 only when its (4 bit) input represents an integer in 2's complement that is a multiple of 3. Do not consider 1000 (i.e., on that sequence the function is undefined). Give a minimal SOP and POS associated to this function.

Ex. 2. Find the minimal SOP associated to the expression $(x \oplus (y \text{ NAND z})) \text{ NOR } x$