Name \qquad Surname \qquad Matric.numb. \qquad
Exercise 1 (3 points). Prove, by using the Boolean axioms and laws, the following identity:

$$
(x+\bar{y}) \cdot(\overline{\bar{x} \cdot y \cdot z})=\overline{\bar{x} \cdot y}
$$

Exercise 2 (5 points) Let $A=-4632,5 \times 10^{-2}$ and $B=13 \times 10^{2}$. Turn A and B in the IEEE half-precision format. Then, compute A + B and represent the result in the same format. Finally, consider the 16 bits as a single natural binary number, turn it in base 16 and subtract to the result the hexadecimal number 2FD.

Exercise 3 ($\mathbf{2}+\mathbf{3}+\mathbf{3}$ points) A combinatorial circuit receives in input the binary encoding of a natural number x , with $3 \leq \mathrm{x} \leq 15$, and produces in output 3 bits $\mathrm{y}_{2} \mathrm{y}_{1} \mathrm{y}_{0}$ that represent function $\mathrm{y}=(3 \mathrm{x}-3) \bmod 11$ (REMARK: Use don't care symbols if y cannot be represented). Realize the circuit by using a PLA; finally, implement y_{1} with a MUX 4-to-1 and y_{2} with an ALL-NAND expression.

Exercise 4 (4 points) Design an automaton that receives in input a bit sequence and considers the last 4 bits received as a number in two complement with 4 bits. The output should be:

- A, if such a number is negative but not multiple of 4 ;
- B, if it is negative and multiple of 4 ;
- C, if it is positive but not multiple of 4;
- D, otherwise.

REMARK: accept also the sequence 1000, seen as a normal number in two complement. Also assume that the first 3 outputs (at the outset of the automaton) can be any value.

Exercise 5 ($2+3$ points): Minimize the following automaton, with initial state S0:

	0	1
S0	S2/0	S1/0
S1	S1/0	S3/0
S2	S1/1	S4/0
S3	S3/0	S1/0
S4	S3/1	S4/0

Then, for the minimized automaton, draw the temporal diagram for input 01101.

Exercise 6 (5 points). Consider two source registers S_{0} and S_{1} and four destination registers D_{0}, D_{1}, D_{2} and D_{3}. Design an interconnection such that:

- if S_{0} is even, then moves its content into D_{0} and D_{1}; otherwise, it moves its content into D_{2}.
- If $S_{0}+S_{1} \geq 0$, then D_{3} receives the content of S_{1}, otherwise the content of S_{0}.

In both cases, the transfer happens only if S_{1} MOD $4=0$.

