Exam of Computer Architectures - UNIT 1 - September 7th, 2021

Exercise 1 (3 points): Turn into base 5, by showing all steps, the following number in base 10 : 120,15.

Exercise 2 (3 points): Sum the following numbers in IEEE half-precision format:

$$
<0 ; 01010 ; 1110000000>\quad \text { and } \quad<1 ; 10000 ; 1100000000>
$$

Exercise 3 (2 points): Draw the circuit schema of a downwards synchronous counter modulo 32.

Exercise 4 (2+2+2+1 points):

a) Write the truth table of the function that, taken a 3 bits integer (in 2-complement), returns its double represented as a 4 bits integer (in 2-complement). Assume that 100 will never be received.
b) Implement the most signifying bit of the obtained function with a MUX 2-to-1:
c) Write the minimal POS formulae associated to the two less signifying bits of the function:
d) Implement the whole function with a ROM:

Exercise 5 (6 points): Consider the following automaton:

	0	1
S 0	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 0 / 0$
S 1	$\mathrm{~S} 2 / 0$	$\mathrm{~S} 3 / 1$
S 2	$\mathrm{~S} 2 / 0$	$\mathrm{~S} 3 / 1$
S 3	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 0 / 1$
S 4	$\mathrm{~S} 1 / 0$	$\mathrm{~S} 5 / 0$
S 5	$\mathrm{~S} 2 / 0$	$\mathrm{~S} 4 / 0$

Minimize it and write down the associated sequential net that uses a JK FF for the most signifying bit and a T FF for the less signifying one.

Exercise 6 (4 points): Design an automaton that receives in input two bit sequences and gives in output 1 whenever the last three bits of the first sequence followed by the last two bits of the second sequence represent a natural number in base 2 that is a multiple of 8 . The first two outputs are ignored, hence you can handle them in the way that makes the automaton simpler.

Exercise 7 (5 points): We have four source registers S_{0}, S_{1}, S_{2} and S_{3} and two destination registers D_{0} and D_{1}. Implement an interconnection such that:

- The index of the source register to be moved into D_{0} is given by calculating $\left(\mathrm{S}_{0}+2\right) \bmod 4$;
- $\quad D_{1}$ receives the content of S_{1}, if S_{0} is greater than or equal to $S_{2} ; S_{3}$ otherwise.

In both cases, trasfers are enabled only if S_{3} is even.

