Computer Architecture Unit 1 - Sept. 6th, 2022

Exercise 1 (6 points) Design an automaton that takes in input binary sequences and gives in output 1 every time that the number of subsequences 01 received up to that moment equals the number of subsequence 10 received (also with overlapping), and gives 0 otherwise. Design the corresponding circuit by using FF of kind D and a ROM for the combinatorial part.
Example:
IN: 01011100010
OUT: 10100011101

Exercise 2 (6 points) A control circuit receives in input the boolean values a, b, c, d and gives in output z1 ez0 such that:

- z1=1 if $\quad a \cdot b=1$ or $\bar{b}+\bar{c}+d=0$ or $b \oplus \bar{d}=1$
- $\mathrm{zO}=1$ if $\quad \bar{b} \cdot d=1$ or $a+\bar{c}+\bar{d}=0$ or $a \oplus c=0$
i. Give the truth table
ii. Realize z 1 and zO by using a PLA
iii. Implement z1 by a MUX 4-to-1, by using a and b as control variables.

Exercise 3 (3 points) Given values $\mathrm{X}=3607$ and $\mathrm{Y}=6275$ represented in base 10:

- turn them in base 16
- calculate $Z=X+Y$ by working in base 16
- turn Z in base 10 and check its correctness
- turn Z in base 2

Exercise 4 (5 points) Design an interconnection between 3 source registers S1..S3 and 3
destination registers D1..D3 such that

1. D1 receives the content of S1, S2 or S3 according to whether, respectively, S1 is greater, smaller or equal to S2;
2. transfers S3 in D2, if the maximum between S2 and S3 is negative, in D3 otherwise. All transfers are enabled if the content of D1 is multiple of 4 .

Exercise 5 (4 points) Given $A=-0.6875$, represent it in floating point by using the IEEE half-precision standard. Calculate the sum between A and B, with $B=\langle 1 ; 01111 ; 1100000000\rangle$, and represent the result by using the same format. Finally, turn in hexadecimal the binary number obtained by the 16 bits of the IEEE half-precision representation of the result.

Exercise 6 (6 points) Consider the following Boolean expression:

$$
(a \bar{c} \oplus \bar{b})(\overline{b+c})+\bar{d}(a+b)(a \oplus c)+(\overline{a+\bar{c}})
$$

1. Put it in SOP normal form
2. Provide its truth table
3. Give a minimal POS expression
4. Provide an ALL-NOR expression
