Exam of Computer Architecture Unit 1 - June 28 ${ }^{\text {th }}, 2022$

Exercise 1 ($\mathbf{2 + 2 + 2 + 2}$ points) Given X in 2 complement with 4 bits,

- Give the truth table for the Boolean function Y, represented in 2 complement with 4 bits $у_{3} y_{2} y_{1} y_{0}$, such that:

$$
Y= \begin{cases}12-2 X & \text { if } X \text { is even } \\ 2 X+9 & \text { if } X \text { is odd }\end{cases}
$$

Use don't care symbols for the values of Y that are not representable with 4 bits;

- Implement Y by using a PLA;
- Implement y_{2} by using a MUX 4-to-1;
- Provide an ALL-NAND expression for y_{2}.

Exercise 2 (7 punti) Design a sequential net that receives in input a sequence of characters chosen from the alphabet $\{\mathrm{A}, \mathrm{E}, \mathrm{G}, \mathrm{M}\}$ and produces in output 1 whenever it recognizes sequences GAG and GAME, also with overlapping. Provide the automaton (3 points) and the futurte states table, by using a JK FlipFlop for the MSB and a SR FlipFlop for the LSB (2 points). Finally, derive the minimal expressions (2 punti).

Exercise 3 (3 points) Prove the following identity, by specifying the axioms and rules of the Boolean algebra used in every step:

$$
c+\overline{\overline{(a+(b \oplus c))}+c}=a+b+c
$$

Exercise 4 (4 points) Given $A=-34,83$, represent it in floating point by using the IEEE half-precision format. Then, compute the sum between A and $B=<0 ; 10011 ; 1011011000>$ and represent the result in the same floating point format. Finally, turn into hexadecimal the binary number obtained from the 16 bits of the IEEE half-precision representation of the result.

Exercise 5 (3 points) Minimize the following automaton:

	$\mathbf{0}$	$\mathbf{1}$
\mathbf{A}	$\mathrm{B} / 0$	$\mathrm{C} / 0$
\mathbf{B}	$\mathrm{~A} / 0$	$\mathrm{C} / 1$
\mathbf{C}	$\mathrm{~B} / 1$	$\mathrm{~A} / 1$
\mathbf{D}	$\mathrm{~B} / 0$	$\mathrm{E} / 0$
\mathbf{E}	$\mathrm{~B} / 1$	$\mathrm{D} / 1$
\mathbf{F}	$\mathrm{G} / 0$	$\mathrm{E} / 1$
\mathbf{G}	$\mathrm{~F} / 0$	$\mathrm{C} / 0$

Exercise 6 (5 points). Consider the four source registers $S_{0}-S_{3}$ and the three destination registers $\mathrm{D}_{1}-\mathrm{D}_{3}$. Design an interconnection net such that:

- $\quad \mathrm{D}_{3}$ receives the content of $\mathrm{S}_{(\mathrm{i}+1)}$ MOD 4, where index i is given by the two most signifying bits of S_{2};
- Moves the XOR between S_{2} and S_{3} into D_{1}, if the content of S_{1} is odd, or into D_{2}, otherwise. The transfers are enabled if the difference between S_{2} and S_{3} is negative.

