Name \qquad Surname \qquad Matric.numb. \qquad

Exercise 1 (3 points): Prove, by using axioms and laws of the Boolean algebra (and by specifying which axiom/law has been used), the following equality:

$$
a b+c(\bar{a}+\bar{b})=a b+c
$$

Exercise 2 (3+1 points): Design a Mealy automaton with input alphabeth $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ that accepts the sequences $\mathrm{XXYZ}, \mathrm{XYXY}$ and XYZZ also with overlappings. How would the automaton change if no overlapping was allowed?

Exercise 3 (5 points): Design an interconnection net among registers $R_{0}, R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} such that:

- If the value contained in R_{0} is negative, then the arithmetic sum between R_{0} and R_{1} is moved into R_{4}; otherwise, R_{4} receives the content of R_{3};
- If R_{2} is greater than R_{3}, then R_{1} is copied into R_{5}; otherwise, R_{5} receives R_{3};
- $\quad R_{4}$ is copied into register R_{i} where i is given by the two less signifying bits of R_{5}.

The transfers are enabled only when the content of R_{0} is a negative integer.

Exercise 4 (4 points): Turn into base 8 the number 339_{10}. Then, sum 267_{8} to the obtained number, turn the result in base 2 and calculate the opposite of this number in 2 -complement format with 12 bits.

Exercise 5 (3 points): Let $A=<0 ; 01111 ; 0011100000>$ and $B=<1 ; 10001 ; 0011100000>$ be two numbers in the IEEE half-precision format. Sum them and represent the result in the same format.

Exercise 6 (3+2 points): Consider the following automaton with initial state SO:

	0	1
S0	S1/1	S0/0
S1	S2/0	S3/1
S2	S1/0	S4/1
S3	S1/0	S0/0
S4	S2/0	S0/0
S5	S2/0	S3/0

Minimize it and then provide (for the minimal automaton) the temporal diagram for the input 000101.

Exercise $\mathbf{7 (2 + 2 + 2}$ points): Consider the following combinatorial circuit:

a) Write the boolean expression associated to y and its truth table;
b) Find a minimal SOP for y;
c) Turn the resulting expression in ALL-NAND form.

