CLASSWORK of COMPUTER ARCHITECTURES -- UNIT 1 January 12th, 2021 | Name | Surname | Matric.numb | |-------|---|---| | ` • ′ | Prove, by using axioms and laws of sed), the following equality: $a b + c(\bar{a} + \bar{b}) =$ | the Boolean algebra (and by specifying which $a b + c$ | | | | | | | | | | • • | Y and XYZZ also with overlapping | th input alphabeth {X, Y, Z} that accepts the s. How would the automaton change if no | **Exercise 3 (5 points):** Design an interconnection net among registers R₀, R₁, R₂, R₃, R₄ and R₅ such that: - If the value contained in R_0 is negative, then the arithmetic sum between R_0 and R_1 is moved into R_4 ; otherwise, R_4 receives the content of R_3 ; - If R_2 is greater than R_3 , then R_1 is copied into R_5 ; otherwise, R_5 receives R_3 ; - R_4 is copied into register R_i where i is given by the two less signifying bits of R_5 . The transfers are enabled only when the content of R_0 is a negative integer. **Exercise 4 (4 points):** Turn into base 8 the number 339_{10} . Then, sum 267_8 to the obtained number, turn the result in base 2 and calculate the opposite of this number in 2-complement format with 12 bits. **Exercise 5 (3 points):** Let A = <0;01111;0011100000> and B = <1;10001;0011100000> be two numbers in the IEEE half-precision format. Sum them and represent the result in the same format. **Exercise 6 (3+2 points):** Consider the following automaton with initial state S0: | | 0 | 1 | |----|------|------| | S0 | S1/1 | S0/0 | | S1 | S2/0 | S3/1 | | S2 | S1/0 | S4/1 | | S3 | S1/0 | S0/0 | | S4 | S2/0 | S0/0 | | S5 | S2/0 | S3/0 | Minimize it and then provide (for the minimal automaton) the temporal diagram for the input 000101. **Exercise 7 (2+2+2 points):** Consider the following combinatorial circuit: - a) Write the boolean expression associated to y and its truth table; - b) Find a minimal SOP for y; - c) Turn the resulting expression in ALL-NAND form.