CLASSWORK of COMPUTER ARCHITECTURES -- UNIT 1 January 12th, 2021

Name	Surname	Matric.numb
` • ′	Prove, by using axioms and laws of sed), the following equality: $a b + c(\bar{a} + \bar{b}) =$	the Boolean algebra (and by specifying which $a b + c$
• •	Y and XYZZ also with overlapping	th input alphabeth {X, Y, Z} that accepts the s. How would the automaton change if no

Exercise 3 (5 points): Design an interconnection net among registers R₀, R₁, R₂, R₃, R₄ and R₅ such that:

- If the value contained in R_0 is negative, then the arithmetic sum between R_0 and R_1 is moved into R_4 ; otherwise, R_4 receives the content of R_3 ;
- If R_2 is greater than R_3 , then R_1 is copied into R_5 ; otherwise, R_5 receives R_3 ;
- R_4 is copied into register R_i where i is given by the two less signifying bits of R_5 .

The transfers are enabled only when the content of R_0 is a negative integer.

Exercise 4 (4 points): Turn into base 8 the number 339_{10} . Then, sum 267_8 to the obtained number, turn the result in base 2 and calculate the opposite of this number in 2-complement format with 12 bits.

Exercise 5 (3 points): Let A = <0;01111;0011100000> and B = <1;10001;0011100000> be two numbers in the IEEE half-precision format. Sum them and represent the result in the same format.

Exercise 6 (3+2 points): Consider the following automaton with initial state S0:

	0	1
S0	S1/1	S0/0
S1	S2/0	S3/1
S2	S1/0	S4/1
S3	S1/0	S0/0
S4	S2/0	S0/0
S5	S2/0	S3/0

Minimize it and then provide (for the minimal automaton) the temporal diagram for the input 000101.

Exercise 7 (2+2+2 points): Consider the following combinatorial circuit:

- a) Write the boolean expression associated to y and its truth table;
- b) Find a minimal SOP for y;
- c) Turn the resulting expression in ALL-NAND form.