Exercise 1 ($\mathbf{4 + 2}$ points): Analyze the circuit in figure (up to the minimal automaton). Then, provide the temporal diagram of the circuit with the input sequence 110010.

Exercise 2 (7 points): Design a sequential circuit with one input x and two outputs z 1 and z 0 . Output z 1 must be 1 if the last three input bits exactly contain two 1 s, while $z 0$ must be 1 if the last two bits are equal. Use an SR FF for the MSB and T FFs for the remaining bits.

Example: x 0101110010000011
z1 0001101000000001
z0 0000110100111101

Exercise $\mathbf{3}$ (3 points): By using Boolean algebra, prove that:

$$
(\bar{a} \oplus b)+\overline{\overline{(a c+b)}(a+b c)}=\bar{a}+b+c
$$

Exercise 4 (4 points): Interconnect 4 registers R1...R4 through a bus so that:

- If R1 is even, then the content of R2 goes into R3 and R4
- otherwise, the content of R3 goes into R1 and R2.

Movements are enabled only if the maximum between R1 and R2 is multiple of 4.

Exercise 5 (4 points): Given $\mathrm{X}=<0 ; 10000 ; 0010000000>$ and $\mathrm{Y}=<1 ; 01111 ; 0100000000>$ in IEEE half-precision format, calculate $\mathrm{X}+\mathrm{Y}$ and represent the result both in IEEE half-precision and in decimal notation.

Exercise 6 (2+1+1+2 points)

- Consider the circuit in figure and write down the BE of function f
- Write the truth table for f
- Write the minimal POS expression for f
- Write f in ALLNOR form.

Exercise 1 ($\mathbf{4 + 2}$ points): Analyze the circuit in figure (up to the minimal automaton). Then, provide the temporal diagram of the circuit with the input sequence 100110.

Exercise 2 (7 points): Design a sequential circuit with one input x and two outputs z 1 and z 0 . Output z 1 must be 1 if the last three input bits represent an odd negative number, while z0 must be 1 if the last two bits are different. Use an SR FF for the MSB and T FFs for the remaining bits.

```
Example: x 011110010000011
    z1 000110000000000
    z0 010001011000010
```

Exercise 3 (3 points): By using Boolean algebra, prove that:

$$
\overline{\overline{(a b+c)}(a+b c)}+(a \oplus \bar{c})=\bar{a}+b+c
$$

Exercise 4 (4 points): Interconnect 4 registers R1...R4 through a bus so that:

- If R1 is odd, then the content of R3 goes into R2 and R4
- otherwise, the content of R2 goes into R1 and R3.

Movements are enabled only if the minimum between R1 and R2 is not multiple of 4 .
Exercise 5 (4 points): Given $\mathrm{X}=<1 ; 10001 ; 0100000000>$ e $\mathrm{Y}=<0 ; 10000 ; 1100000000>$ in IEEE half-precision format, calculate $\mathrm{X}+\mathrm{Y}$ and represent the result both in IEEE half-precision and in decimal notation.

Exercise 6 (2+1+1+2 points)

- Consider the circuit in figure and write down the BE of function f
- Write the truth table for f
- Write the minimal POS expression for f
- Write f in ALLNOR form.

