Exercise 1 (4 points): Consider the source registers R0, R1 and R2, and the destination registers D0, D1, D2 and D3. Design an interconnection schema such that:

- in D0 is moved R0, if R0 itself is even, otherwise it is moved the opposite of R0;
- the sum between R1 and R2 is moved in D1 if R2> R1, in D2 if R2<R1, in D3 if R1=R2. Transfers are enabled if R1 and R2 are even and with different sign.

Exercise 2 (3 points): By using axioms and laws of Boolean algebra, prove the following identity:

$$
(a \bar{b}+\overline{\bar{b} c+c(\bar{a}+b)}) \oplus a c=a b+\bar{c}
$$

Exercise 3 (10 points): Give the tabular representation of an automaton that receives in input a bit sequence and gives in output 1 whenever the last 3 bits, seen as an integer in 2-complement, represent a negative number that is not multiple of 4, by also considering overlappings; when 3 bits have not been received yet, return 0 . Then, draw the temporal diagram with input 11001. Finally, modify the automaton not to admit overlappings, minimize it and synthetize the associated circuit, by using a JK FF for the most signifying bit, T FFs for the remaining bits, and a PLA for the combinatorial part.

Exercise 4 (5 points): Consider the hexadecimal number 2A5B and subtract to it in base 16 the hexadecimal number 9C7. Then, convert the result in a binary sequence of 16 bits, to be considered as a rational number in IEEE 754 half-precision format. Subtract from this number the rational number $<1 ; 01001 ; 1100000000>$, still expressed in IEEE half-precision format, and write the result in the same format.

Exercise $5(\mathbf{1 + 1 + 2 + 2 + 2}$ points): The 4 variables function $f(a, b, c, d)$ holds 0 if $a(b \oplus c)=1$ or if $a+b+d=0$.

- Provide the truth table for f
- Write the canonical SOP and POS expressions for f
- Write the minimal SOP and POS expressions for f
- Realize f by using a MUX with 4 inputs
- Write f in ALL-NAND form

Exercise $\mathbf{1}(\mathbf{1 + 1 + 2 + 2 + 2}$ points): The 4 variables function $f(a, b, c, d)$ holds 0 if $(\bar{a}+b)(a+\bar{b})=1$ or if $a \oplus b \oplus d=0$.

- Provide the truth table for f
- Write the canonical SOP and POS expressions for f
- Write the minimal SOP and POS expressions for f
- Realize f by using a MUX with 4 inputs
- Write f in ALL-NOR form

Exercise 2 (4 points): Consider the source registers R0, R1 and R2, and the destination registers D0, D1, D2, D3 and D4. Design an interconnection schema such that:

- in D0 is moved R0-R1, if R2 is even, otherwise it is moved R1-R0;
- R2 is moved in D1, if R1 is even and non-negative, in D2, if R1 is odd and non-negative, in D3, if R1 is even and negative, in D4, if R1 is odd and negative.
Transfers are enabled if R0 is not multiple of 2 .

Exercise 3 (10 points): Give the tabular representation of an automaton that receives in input a bit sequence and gives in output 1 whenever the last 3 bits, seen as an integer in 2-complement, represent a number that is either negative or multiple of 4, by also considering overlappings; when 3 bits have not been received yet, return 0 . Then, draw the temporal diagram with input 11001. Finally, modify the automaton not to admit overlappings and synthetize the associated circuit, by using a JK FF for the most signifying bit, T FFs for the remaining bits, and a PLA for the combinatorial part.

Exercise 4 ($\mathbf{3}$ points): By using axioms and laws of Boolean algebra, prove the following identity:

$$
(x \bar{z}+\overline{y z+y(x+\bar{z})}) \oplus x y=\bar{y}+x z
$$

Exercise 5 (5 points): Consider the hexadecimal number 4A5B and subtract to it in base 16 the hexadecimal number 6 C 1 . Then, convert the result in a binary sequence of 16 bits, to be considered as a rational number in IEEE 754 half-precision format. Subtract from this number the rational number $<1 ; 10001 ; 1110000000>$, still expressed in IEEE half-precision format, and write the result in the same format.

