## Exam Computer Architecture - Unit 1 --- June 15 ${ }^{\text {th }}, 2021$

Exercise 1 ( 5 points): Analyze the following sequential net, up to the final automaton:


Exercise 2 ( $\mathbf{7 + 2}$ points): Design a sequential circuit with input x and two outputs z 1 and z 0 : z 1 is 1 if the last 3 bits in input represent a negative number in 2 -complement; $z 0$ is 1 if the last 3 bits contain at least two 0 's. In designing the automaton, do NOT consider superpositions.

| Example: | $\mathrm{x}:$ | 010111 |
| :--- | :--- | :--- |
|  | $\mathrm{zl}:$ | 000001 |
|  | $\mathrm{zO}:$ | 001000 |

Finally, draw the temporal diagram for the input 010111.

Exercise $\mathbf{3}$ (1+2+1 points): Represent $\mathrm{X}=-42$ and $\mathrm{Y}=95$ in 2-complement, each with the minimum number of bits. Then, calculate the minimum number needed for representing both the sum $\mathrm{X}+\mathrm{Y}$ and the difference $\mathrm{X}-\mathrm{Y}$, turn X and Y to such length and perform the two operations in 2-complement. Finally, check the obtained results by turning them in base 10.

Exercise 4 (3 points): By using the axioms of Boolean algebra, prove the following equality:

$$
\overline{(\bar{b}+c)(a+b \bar{c})}+(\bar{a} c+b) \overline{(a \oplus b c)}=b+\bar{a}
$$

Exercise 5 (6 points): Design an interconnection net such that:

- $R_{4}$ receives: $R_{0}$, if $R_{4}$ and $R_{5}$ are both negative; $R_{1}$, if $R_{4}$ and $R_{5}$ are both non-negative; $R_{2}$, if $R_{4}$ is negative and $R_{5}$ is non-negative; $R_{3}$, if $R_{4}$ is non-negative and $R_{5}$ negative;
- $\quad R_{4}$ is copied into $R_{6}$, if the content of $R_{4}$ is even, in $R_{7}$, otherwise;
- $\quad R_{5}$ receives the maximum between $R_{6}$ and $R_{7}$.

All transfers are enabled if $\mathrm{R}_{5}$ is not multiple of 4 .

Exercise 6 (3 points): Given the hexadecimal numbers $\mathrm{X}=\mathrm{C} 9 \mathrm{~B} 0$ and $\mathrm{Y}=4890$, turn them in binary and then consider the sequences obtained as values in floating point, in the standard IEEE half-precision format. Sum the obtained floating point numbers; then, convert in base 10 both the operands and the result.

