Exam of Computer Architectures - UNIT 1 - July 13th, 2021

Exercise 1 (5 points) Design a circuit that provides how many days there are in a month. The month is specified by a 4 bits input, $a_{3} a_{2} a_{1} a_{0}$. For example, with input 000 the month is January; if the input is 1100 the month is December. The circuit output Y_{2} must be 1 only when the input month has 31 days; Y_{1} is 1 when the month has 30 days; and Y_{0} is 1 when the month has 28 days. Write the minimal SOP and POS formulae. Then, implement Y 2 with a 4-to-1 multiplexer.

Exercise 2 (5 points): Design an interconnection of 4 registers R0, .., R3 such that:

- R0 receives the minimum value among the remeining three registers; this transfer is enabled only if R0 is positive;
- $R 0$ is moved into $R 1$ and $R 2$, if $R 1$ is even, in $R 3$, otherwise.

Exercise 3 (4 points)

a. Turn the decimal numbers $\mathrm{X}=111$ and $\mathrm{Y}=78$ in 2-complement with 8 bits and calculate $\mathrm{Z}=\mathrm{X}-\mathrm{Y}$ and $\mathrm{W}=\mathrm{X}+\mathrm{Y}$. Then, turn the results in hesixadecimal.
b. Sum $3 \mathrm{EAB}_{16}$ and $2 \mathrm{E} 73_{16}$, turn the result in base 4 and subtract 31321_{4}.

Exercise 4 (5 points): Design an automaton that receives in input x and produces in output z . The output is 1 if and only if the natural number given by the last 3 bits received so far has reminder 1 when divided by 3 . You can accept overlappings. Ignore the first two outputs (that can be any value).

$$
\begin{array}{lll}
\text { Example: } & \text { INPUT: } & 1101100011110 \\
& \text { OUTPUT: } & --00001010110
\end{array}
$$

Exercise 5 (4 points): Analyze the following sequential circuit and give the associated automaton.

Exercise 6 (3 points) Given the expression $f=(\bar{a}+\overline{b(b+\overline{c d e})}) \oplus(\bar{a}+c d)$, simplify it and write it in canonical SOP form. Then, realize f in ALL-NAND form.

Exercise 7 (4 points) Consider the following combinatorial circuit:

Write the boolean expression for Y and from it derive the minimal BE equivalent to it.

