

Let Rs be a source register and let $\mathrm{Rd}_{0}, \mathrm{Rd}_{1}, \mathrm{Rd}_{2}$ and Rd_{3} be four destination registers. Design the interconnection net such that, when in_Rd holds 1, the content of Rs is moved into Rd_{j}, where j is given by the binary number resulting from the two less signifying bits of Rs.

SOLUTION:

Example 2 SAPIENZA

Design an inteconnection between R_{0}, R_{1} and R_{2} such that:

- R_{0} is moved into R_{1} if $\mathrm{R}_{1}>\mathrm{R}_{2}$;
- R_{1} is moved into R_{2} if $R_{0}<R_{1}$,
- R_{2} is moved into R_{0} if $R_{0}=R_{1} \mid R_{2}$ (where \mid denotes the bitwise $O R$).

SOLUTION:

The interconnection net is obtained as 31 -to- 1 schemata:

Design a many-to-many interconnection net that allows to move the content of two among $N k$-bits registers $\mathrm{R}_{1} \ldots \mathrm{R}_{\mathrm{N}}$ to one between M computing modules (with two inputs) $\mathrm{E}_{1} \ldots . \mathrm{E}_{\mathrm{M}}$.

Draw the black-box schema with all control circuits necessary for:

- selecting 2 among the N source registers (i.e., the operands);
- applying to them the functionality of one of the M computing modules.

Then, draw the detailed schema (up-to the level of FFs and logic gates) when we have:

- 3 source registers that store 2 bits ($N=3, k=2$), with FFs of kind JK;
- 2 computing modules ($M=2$), one of which is an adder and the other one
that computes the bitwise AND of the input operators.

