
15/12/20

1

Registers interconnection: examples
Prof. Daniele Gorla

inRd

c1

c0

Rd0 Rs

Rd1

Rd2

Rd3

D
E
C

LSB

Example 1

2 2

Let Rs be a source register and let Rd0, Rd1, Rd2 and Rd3 be four destination
registers. Design the interconnection net such that, when in_Rd holds 1, the
content of Rs is moved into Rdj, where j is given by the binary number resulting
from the two less signifying bits of Rs.

SOLUTION:

Example 2

3

Design an inteconnection between R0, R1 and R2 such that:
•  R0 is moved into R1 if R1 > R2;
•  R1 is moved into R2 if R0 < R1;
•  R2 is moved into R0 if R0 = R1 | R2 (where | denotes the bitwise OR).

SOLUTION:

The interconnection net is obtained as 3 1-to-1 schemata:

inR0

R0

R1
R2

inR1 inR2

Solution

4

We then have to design the circuit for the control signals in_R0, in_R1 and in_R2.
The conditions for the first two interconnections suggest to use comparators:

=
>

>
=

inR0

R0

R1

R2

 COMP COMP

•  R0 à R1 if R1 > R2;
•  R1 à R2 if R0 < R1;
•  R2 à R0 if R0 = R1 | R2

15/12/20

2

Solution (cont’d)

5

 OR

For in_R0, let us observe that the bitwise OR is simply performed as follows:

 = …

By using it, we shall have:

=
>

>
=

R0

R1

R2

 COMP COMP

>=
 COMP

 OR

Example 3

6

Design a many-to-many interconnection net that allows to move the content
of two among N k-bits registers R1...RN to one between M computing
modules (with two inputs) E1....EM.

Draw the black-box schema with all control circuits necessary for:
•  selecting 2 among the N source registers (i.e., the operands);
•  applying to them the functionality of one of the M computing modules.

Then, draw the detailed schema (up-to the level of FFs and logic gates) when
we have:
• 3 source registers that store 2 bits (N=3, k=2), with FFs of kind JK;
• 2 computing modules (M=2), one of which is an adder and the other one
 that computes the bitwise AND of the input operators.

Black-box Solution

7

R1

R2

RN

mux1

c1…cn

mux2

cn+1…c2n

E1

E2

EM

inE1

inE2

inEM

We have a (set of k) MUX for every operand in input to the computing modules:
MUX1 selects the first operand among the N source registers through the control
signals c1….cn; MUX2 selects the second operand through the control signals cn+1…
c2n, where, as usual, n is the upper integer part of log2 N.

Every computing module has a control signal in_Ej that enables reading and
computing the operands previously stored in the input lines of module j.

Detailed Solution

8

add

mux3

mux2

mux1

mux0
R1

J11
K11

J12
K12

R2
J21
K21

J22
K22

R3
J31
K31

J32
K32

c1 c2

c3 c4

c1 c2

c3 c4

ADD0

ADD1

and

carry

mux0 selects the less signifying
bit of the first operand and mux1
selects the most signifying one
(hence, they are controlled by the
same lines c1 and c2);
mux2 selects the less signifying
bit of the second operand and
mux3 selects the most signifying
one (again, they have the same
control lines c3 and c4).

The operation is chosen by
setting lines add (corresponding
to in_E1) and and (corresponding
to in_E2).

Finally, carry is used to signal a
possible carry out of the adder.

N=3, k=2, M=2:

