
14/12/20

1

Register Interconnection
Prof. Daniele Gorla

Interconnecting registers
To be stored and handled, information must be moved from one register to
another one within a computer.

This is done through interconnection nets.

REMARK: if registers have a parallel download (PIPO/SIPO), the moved
information is actually copied from the source register to the destination one.

However, we don’t care about uploading/downloading and assume that a
register is simply

where thick lines denote n bits (if the register is made up by n FFs) and line
in_R enables writing into the register (like the load line for the PIPO)

2

 R

in_R

4 interconnection kinds

3

Fixed destination Variable destination

Fixed
source

(point-2-point) through logic
gates or buffer tri-state

With decoder

Variable
source

With multiplexer Through mesh or bus

Fixed source and destination:
logic gates

4

 R R'

in_R'

inR'

S

R

S

R

S

R

S

R

To move the content of R into R’, it suffices to connect the output of R to the
input of R’ and set in_R’ whenever the info must be moved:

This is actually a schematic way to represent
the following interconnection, by assuming
that ragisters are sequences of SR FFs:

14/12/20

2

Fixed Source and destination:
tri-states Buffers

5

inR'

S

R

S

R

S

R

S

R

A tri-states buffer is an electronic interruptor,
Graphically designed as

that can assume three states (hence the name):
 - open circuit: s = 0;
 - closed circuit and output 0: s=1 & a=0;
 - closed circuit and output 1: s=1 & a=1.

Instead of using AND gates, in the previous circuit
we can use tri-states buffers with bit in_R‘ as control line:

s
c a

Variable Source & Fixed destination:
interconnection through multiplexers
The source can be any of N registers Ri, whereas the destination register Rd is
fixed.

This can be realized through a MUX whose data lines are the outputs of the N
sources and whose output is given in input to the destination:

The MUX’s control lines c1,…cm are m = log2 N and provide the binary
encoding of the index i of the register Ri whose content must be copied in Rd.

6

in_Rd

c1…cm

R1

R2

RN

Rd

Interconnection through MUX:
details (single lines)

•  The first FF of every source
register is connected with the
first MUX, whose output goes to
the first FF of Rd;

•  The second FF of every source
register is connected with the
second MUX, whose output goes
to the second FF of Rd;

•  …

The control lines are the same for all

MUXs. 7

in_Rd

c1…cm

In the previous representation, thick lines are actually n bits; hence, also the
MUXs actually are n!!

c1…cm

c1…cm

Fixed Source & variable destination:
interconnection through a DEC
The source Rs is fixed, whereas the destination can be any Ri of a set of N
registers.

This can be done by sending in input
of every destination the output of the
source and by using a decoder to enable
writing in the chosen destination:

Inputs of the decoder c1,…cm are
m = log2 N and provide the binary
encoding of the index i of the register Ri
where the info in Rs must be moved.

The outputs of the DEC are put in AND
with a “global” writing signal (in_R’)
and provide signals in_Ri for the destinations.

8

inR'

c1

cm

R1

R2

RN

Rs

14/12/20

3

Common mistake!
It could be tempting to realize a one-to-many interconnection with a DEMUX,

i.e. something like this:

This does NOT work well; indeed, the DEMUX, on the non-selected lines,
outputs a 0 that, if not properly controlled, would put 0 in all non-selected
destinations.

 à controlling the writing on the destinations requires also in this case a
 DEC, for properly setting lines in_Ri
 à Hence, the DEMUX would be useless!!

9

in_R2

c1…cm

R1

R2

RN

Rd

in_RN

in_R1

Many-to-many Interconnection through mesh

Interconnection between M source registers and N destination ones.

To implement the net, we need N (groups of n) multiplexers, one for every
destination register:

REMARK: Every MUX has
its own control lines
(that are m = log2 M),
to enable moving info from
every source to every destination

10

c1
1…cm

1

Rd1

Rd2

RdN

Rs1

Rs2

RsM

c1
2…cm

2

c1
N…cm

N

in_Rd1

in_Rd2

in_RdN

Esempio di trasferimento
in una mesh

Vogliamo trasferire Rsi
in Rd(i+1) MOD 3.

Rs0 à Rd1:
c1

1 c2
1 = 00, in_Rd1 = 1

Rs1 à Rd2:
c1

2 c2
2 = 01, in_Rd2 = 1

Rs2 à Rd0:
c1

0 c2
0 = 10, in_Rd0 = 1

11

c1
0c2

0

Rd0

Rd1

Rd2

Rs0

Rs1

Rs2

c1
1c2

1

c1
2c2

2

in_Rd0

in_Rd1

in_Rd2

Non-distinct sources and destinations

12

c1
1…cm

1

R1

R2

RN

c1
2…cm

2

c1
N…cm

N

in_R1

in_R2

in_RN

14/12/20

4

Mesh: advantages and disvadvantages

Pro: parallel transfers

Con: costs

Ex.: 128 registers (few!!!) with 32 bits

•  128 × 32 = 4096 MUX 128-to-1
•  every MUX 128-to-1 is made up by a 7-to-128 DEC, 128 AND gates and

127 OR gates
•  A 7-to-128 DEC is made up by 7

 NOT gates and 128 AND gates
TOTAL: 4096 × ((7+128)+128+127)

 ≈ 1,6 milions gates!!!!

13

DEC

x0

x1

 x127

 y

c 7 c1
 ...

 ...

c1
1

…
cm

1 R1

R2

RN

c1
2

…
cm

2

c1
N

…
cm

N

in_
R1

in_
R2

in_
RN

A cheaper mesh

14

R1

R2

RN

c1…cm

in_R1

in_R2

in_RN

Con: reduced parallelism
(only transfers with the same source)

Pro: much cheaper!

Ex.: 128 register with 32 bits

•  32 MUX 128-to-1
•  every MUX 128-to-1 is made up

by a 7-to-128 DEC (7 NOT and
128 AND), 128 AND gates and
127 OR gates

TOTAL: 32 × ((7+128)+128+127)

 ≈ 12,5 thousands gates

Many-to-many Interconnection through bus

15

If we reduce parallelism, we can realize the previous interconnection in an
even cheaper way through a bus, i.e. a stream of n lines that interconnect all
registers, both in input and in output.

REMARK: to avoid conflicts in the bus access, every output is contraolled by
a (set of n) tri-states buffers, each controlled by signal from_Ri that holds 1 if
the source is Ri. Of course, we must ensure that at most one of such signals
holds 1 at every time.

Ex. (128 register with 32 bits): 128×32 ≈ 4100 tri-states buffers

in_RN in_R1 in_R2

from_RN from_R2 from_R1

RN R2 R1

Bus vs mesh

2 kinds of memory:
•  central (in the microprocessor): a few very quick registers
•  mass: milions of register made up with cheaper technology

2 kinds of interconnection:

•  mesh between the microprocessor registers
•  bus to move data from mass memory to the central one

16

14/12/20

5

Design an interconnection net

We have 3 parts:
•  The inveolved registers

(R1..RN)
•  The interconnection net

that, in the general case,
allows to move the content
of every register into every
other register

•  The control combinatorial
net that checks some
internal condition (content
of registers) or esternal one
(signals S) and generates
the comands for the circuits
that regulate the inter-
connection

17

R1

Rn

R2

.

.

.

Rete di
interconnessione

(MUX, DEC,

bus, …)

Rete di controllo

...

S

c1,c2...cm

