Register Interconnection

Prof. Daniele Gorla

SAPIENZA

UNIVERSITA DI ROMA

) ) % SAPIENZA
Interconnecting registers Dot i rouurics
To be stored and handled, information must be moved from one register to
another one within a computer.

This is done through interconnection nets.

REMARK: if registers have a parallel download (PIPO/SIPO), the moved
information is actually copied from the source register to the destination one.

However, we don’t care about uploading/downloading and assume that a

register is simply

in_R
where thick lines denote 7 bits (if the register is made up by n FFs) and line
in_R enables writing into the register (like the /oad line for the PIPO)

4 interconnection kinds

Fixed destination

Variable destination

Fixed (point-2-point) through logic | With decoder

source gates or buffer tri-state

Variable With multiplexer Through mesh or bus
source

Fixed source and destination:
logic gates

To move the content of R into R, it suffices to connect the output of R to the
input of R’ and set in_R’ whenever the info must be moved:

(R —{x

‘ in_R'

This is actually a schematic way to represent
the following interconnection, by assuming
that ragisters are sequences of SR FFs:

14/12/20



Fixed Source and destination: %

’ SAPIENZA
tri-states Buffers ;

NIVERSITA DI ROMA
DIPARTIMENTO DI INFORMATICA

A tri-states buffer is an electronic interruptor,
Graphically designed as

%‘ S I
S ]

1

that can assume three states (hence the name):
- open circuit: s = 0;
- closed circuit and output 0: s=1 & a=0;

- closed circuit and output 1: s=1 & a=I. s -

Instead of using AND gates, in the previous circuit
we can use tri-states buffers with bitin_R “as control line: ink

NZA

DI INFORMATICA

Variable Source & Fixed destination: % SAPIE
interconnection through multiplexers i

The source can be any of N registers R;, whereas the destination register R, is
fixed.

This can be realized through a MUX whose data lines are the outputs of the N
sources and whose output is given in input to the destination:

The MUX’s control lines ¢;,...c,, are m = (log2 N 1 and provide the binary
encoding of the index i of the register R; whose content must be copied in R.

Interconnection through MUX:
details (single lines)

In the previous representation, thick lines are actually » bits; hence, also the
MUXs actually are n!!

* The first FF of every source
register is connected with the
first MUX, whose output goes to
the first FF of R ;

* The second FF of every source
register is connected with the
second MUX, whose output goes
to the second FF of R ;

The control lines are the same for all
MUXs.

Fixed Source & variable destination: SAPIENZA
interconnection through a DEC s

The source Ry is fixed, whereas the destination can be any R, of a set of N
registers.

inR'

N . . . Rs RI
This can be done by sending in input
of every destination the output of the

source and by using a decoder to enable —D—T

writing in the chosen destination: — ©

Inputs of the decoder c,,...c,, are =
m=|log, NJ and provide the binary I~

encoding of the index 7 of the register R;

where the info in Ry must be moved. RN
The outputs of the DEC are put in AND D o

with a “global” writing signal (in_R’)
and provide signals in_R,; for the destinations.

14/12/20



SAPIENZA
Common mistake! Do o Moo

It could be tempting to realize a one-to-many interconnection with a DEMUX,
i.e. something like this:

This does NOT work well; indeed, the DEMUZX, on the non-selected lines,
outputs a 0 that, if not properly controlled, would put 0 in all non-selected
destinations.
-> controlling the writing on the destinations requires also in this case a
DEC, for properly setting lines in_R;
- Hence, the DEMUX would be useless!!

. N

!Esemplo di trasferimento SAPIENZA
in una mesh Dot i o

e Vogliamo trasferire Rs;
Rs Rd, inRrd, 1 Rd ;1) mop 3+
(N R — ——
o1
Rs, U Rs, 2 Rd;:
Rd, inrg, ¢'c,!=00,in_Rd, =1
Rs, 2> Rd,:
cfe? ¢2¢c,?=01,in Rd, =1
Rs,
Rd, in_Rd,
? Rs, > Rd,:

¢,%¢,’=10,in_Rd,=1

. N

_ % SAPIENZA
Many-to-many Interconnection through mesh Dot i rouurics

Interconnection between M source registers and N destination ones.

To implement the net, we need N (groups of n) multiplexers, one for every
destination register:

clicy!
‘ . in_Rd,
REMARK: Every MUX has
its own control lines Rs, e
(that are m = (]og2 M—‘ ), Rd, | inRd
to enable moving info from /
every source to every destination
Ve,V
Rsy,
<] o
p

L L SAPIENZA
Non-distinct sources and destinations Dot o Totaincs

| ‘ i,
Clz,. m
in R,
E|
eV, Y
in Ry
7

14/12/20



_ % SAPIENZA
Mesh: advantages and disvadvantages Do o Moo

Pro: parallel transfers L <

Ry

Con: costs 4

Ex.: 128 registers (few!!!) with 32 bits |' _iJ K
T

* 128 x 32 =4096 MUX 128-to-1

» every MUX 128-to-1 is made up by a 7-to-128 DEC, 128 AIND gates and
127 OR gates

« A 7-to-128 DEC is made up by 7 i —
NOT gates and 128 AND gates P — w
TOTAL: 4096 x ((7+128)+128+127)
= 1,6 milions gates!!!! . ﬂ/
127 —

A cheaper mesh

Con: reduced parallelism

Many-to-many Interconnection through bus

If we reduce parallelism, we can realize the previous interconnection in an
even cheaper way through a bus, i.e. a stream of # lines that interconnect all
registers, both in input and in output.

in Ry

from_ Ry,

REMARK: to avoid conflicts in the bus access, every output is contraolled by
a (set of n) tri-states buffers, each controlled by signal from_R, that holds 1 if
the source is R,. Of course, we must ensure that at most one of such signals
holds 1 at every time.

Ex. (128 register with 32 bits): 128x32 = 4100 tri-states buffers I

(only transfers with the same source)
in_Ry Pro: much cheaper!
. in R Ex.: 128 register with 32 bits
C —_— * 32 MUX 128-to-1
* every MUX 128-to-1 is made up
by a 7-to-128 DEC (7 NOT and
X 128 AND), 128 AND gates and
7 - 127 OR gates
TOTAL: 32 x ((7+128)+128+127)
= 12,5 thousands gates
Bus vs mesh

2 kinds of memory:
* central (in the microprocessor): a few very quick registers
* mass: milions of register made up with cheaper technology

2 kinds of interconnection:
* mesh between the microprocessor registers
* bus to move data from mass memory to the central one

14/12/20



14/12/20

SAPIENZA

UNIVERSITA DI ROMA

Desigh an interconnection net Dot o oy

We have 3 parts:
* The inveolved registers

(R,.Ry)
» The interconnection net N Retedi R

that, in the general case, ﬂ .| Interconnessione &

allows to move the content

of every register into every (MUX, DEC,

other register . bus, ...)

* The control combinatorial .
net that checks some . Wl
internal condition (content [
of registers) or esternal one
(signals S) and generates
the comands for the circuits Ll
that regulate the inter-
connection Rete di controllo




