
06/12/20

1

Registers: Counters
Prof. Daniele Gorla

Counters

2

A counter is a register used to count the number of occurrences of a certain event,
always modulo some natural number.

 → if it is made up by n FFs, it can count up to modulo 2n

Tipically, the countable events are clock’s impulses or the occurrences of some
Input values or sequences.

We have two kinds of counters:

 ▪ synchronous (all FFs of the counter have the same clock)
 ▪ asynchronous (in the same counters, FFs have different clocks)

They can count upwise or downwise (or both)

They can be set to a value that does not respect the attended counting sequence.

3

Synthesis of the upwise counter modulo 8 (1)

A counter modulo 8 starts from 0 and at every descending wave front of the clock
increments its value by 1, until it arrives at 7; then, it returns to 0 and starts again.

 S0/0

 S1/1
S2/2

 S3/3

 S4/4

 S5/5 S7/7
 S6/6

Binary encoding of the automaton:
•  State Si is associated to the binary coding of i à 3 bits à 3 FFs
•  There is no input alphabeth
•  Output characters are codified with their normal binary coding.

4

y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

State(t) State(t+1)

S0
S1
S2
S3
S4
S5
S6
S7

S1
S2
S3
S4
S5
S6
S7
S0

Synthesis of the upwise counter modulo 8 (2)

J2 K2 J1 K1 J0 K0

0 - 0 - 1 -

0 - 1 - - 1

0 - - 0 1 -

1 - - 1 - 1

- 0 0 - 1 -

- 0 1 - - 1

- 0 - 0 1 -

- 1 - 1 - 1

J0 = K0 = 1
J1 = K1 = y0
J2 = K2 = y1y0

06/12/20

2

5

The upwise counter modulo 8

clock

 y0

 y1

 y2

The upwise counter modulo 16

y3 y2 y1 y0 Y3 Y2 Y1 Y0 J3 K3 J2 K2 J1 K1 J0 K0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
0 0 0 0

0 -
0 -
0 -
0 -
0 -
0 -
0 -
1 -
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 1

0 -
0 -
0 -
1 -
- 0
- 0
- 0
- 1
0 -
0 -
0 -
1 -
- 0
- 0
- 0
- 1

0 -
1 -
- 0
- 1
0 -
1 -
- 0
- 1
0 -
1 -
- 0
- 1
0 -
1 -
- 0
- 1

1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1

6

0 1 2
3

5

11
1
0 9 8

4

6
7

12

13

14
15

J0 = K0 = 1
J1 = K1 = y0
J2 = K2 = y1y0
J3 = K3 = y2y1y0

The upwise counter modulo 2n

7

=

J0 = K0 = 1 Ji+1 = Ki+1 = Ji AND Qi
8

The downwise counter modulo 8

 S0/0

 S7/7
S6/6

 S5/5

 S4/4

 S3/3 S1/1
 S2/2

y2 y1 y0 Y2 Y1 Y0

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

J2 K2 J1 K1 J0 K0

1 - 1 - 1 -

0 - 0 - - 1

0 - - 1 1 -

0 - - 0 - 1

- 1 1 - 1 -

- 0 0 - - 1

- 0 - 1 1 -

- 0 - 0 - 1

J0 = K0 =1

J1 = K1 = y0
J2 = K2 = y1y0

06/12/20

3

The downwise counter modulo 2n

9

J0 = K0 = 1 Ji+1 = Ki+1 = Ji AND Qi

Bidirectional Counter modulo 2n

10

Upwise Counter: Up = 1

Downwise Counter: Up = 0

2 ways: 1. a synthesis procedure for every k
 2. a modular solution, that however uses FFs with
 asynchronous inputs (see later)

Ex.: counter modulo 5

(Upwise) Counter modulo k (≠ 2n)

State(t) State(t+1)

S0
S1
S2
S3
S4

S1
S2
S3
S4
S0

11

y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 - - -

1 1 0 - - -

1 1 1 - - -

J2 K2 J1 K1 J0 K0

0 - 0 - 1 -

0 - 1 - - 1

0 - - 0 1 -

1 - - 1 - 1

- 1 0 - 0 -

- - - - - -

- - - - - -

- - - - - -

J0 = y2
K0 =1

J1 = K1 = y0
J2 = y1y0
K2 =1

J0

K0 1

J1

K1

J2

K2
1

Counter of input signals

x y2 y1 y0 Y2 Y1 Y0 J2 K2 J1 K1 J0 K0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0

0 -
0 -
0 -
0 -
- 0
- 0
- 0
- 0
0 -
0 -
0 -
1 -
- 0
- 0
- 0
- 1

0 -
0 -
- 0
- 0
0 -
0 -
- 0
- 0
0 -
1 -
- 0
- 1
0 -
1 -
- 0
- 1

0 -
- 0
0 -
- 0
0 -
- 0
0 -
- 0
1 -
- 1
1 -
- 1
1 -
- 1
1 -
- 1

12

S0/0

 S1/1
S2/2

S3/3

 S4/4

 S5/5S7/7
S6/6

 1

 1
 1 1

 1

 1

 1 1

 0

 0
 0

 0

 0

 0
 0

 0

J0 = K0 = 1
J1 = K1 = y0
J2 = K2 = y1y0

The same as the one
for the counter modulo 8

x
x
x

06/12/20

4

Asynchronous Counter MOD 8

13

clock

 y0

 y1

 y2

OBS.: FF0 commutes at every descending wave front of the clock;
 FF1 commutes at every descending wave front of FF0;
 FF2 commutes at every descending wave front of FF1.

We can then design a different counter MOD 8 where
•  all FFs are in toggle modality (J = K = 1)
•  FF0 uses as clock the clock signal;
•  FF1 uses as clock y0;
•  FF2 uses as clock y1.

We call such a counter asynchronous because the FFs are not synchronized on
the same clock (notice however that this is still a synchronous circuit, because
a clock is present and FFs commute only at precise moments in time).

14

Implementation and temporal diagram
of the asynchronous counter MOD 8

clock

 y0

 y1

 y2

Delay propagation

15

Since FFs are not syncrhonized on the
same clock, commutation delays sum
one with the other and yield, for very
few moments, to sequences out from
the normal counting (false counts).
This phenomenon is called ripple.

In almost all applications, this effect is
negligible, since delays are very small.

16

Downwise Asynchronous Counter MOD 8

clock

 y0

 y1

 y2

0 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0 0

0 1 1 1 1 0 0 0 0

06/12/20

5

Bidirectional Asynchronous Counter

17

FF with asynchronous inputs
 Sometimes, FFs are equipped with two further inputs, called PRESET and
CLEAR, that work in an asynchronous way w.r.t. the clock: i.e., they are used
to set ot reset the FF in an instantaneous way (independently from the usual
inputs and from the clock).

 Behaviour:

 ▪ PRESET = CLEAR = 0: usual FF;
 ▪ PRESET = 1, CLEAR = 0: immediate set of the FF;
 ▪ PRESET = 0, CLEAR = 1: immediate reset of the FF;
 ▪ PRESET = CLEAR = 1: not used.

18

A modular counter MOD k (≠ 2n)

19

Idea: when passing from k–1 to k, we reset the counter through CLEARs
 à as soon as the counter stores (the binary coding of) k, we activate
 the CLEAR of all FFs for a very small time interval

Ex.: counter MOD 5

Same idea can be used for
downwise, bidirectional or
asynchronous counters

Presettable Counters
A second important use of FFs with asynchronous inputs is to build
presettable counters, where we can force (and maintain) a value out of the
normal counting sequence, independently of the inputs and the clock.

 PL pn-1 … p0 clock

 yn-1 … y0

 Behaviour:

•  If PL (= parallel load) holds 0, then it behaves like a normal counter MOD 2n;
•  If PL = 1, it immediately stores the values on pn-1,…,p0 (parallel data inputs)

in the respective FFs;
•  To store a value, we can simply keep that value on the parallel data inputs and

keep PL = 1.

20

06/12/20

6

A presettable upwards counter MOD 8

21

