

Counters

SAPIENZA

A counter is a register used to count the number of occurrences of a certain event, always modulo some natural number
\rightarrow if it is made up by $n \mathrm{FFs}$, it can count up to modulo 2^{n}
Tipically, the countable events are clock's impulses or the occurrences of some Input values or sequences.

We have two kinds of counters:

- synchronous (all FFs of the counter have the same clock)
- synchronous (all frs of the counter have the same clock)

They can count upwise or downwise (or both)
They can be set to a value that does not respect the attended counting sequence.

Synthesis of the upwise counter modulo 8 (1) SAPIENZA

A counter modulo 8 starts from 0 and at every descending wave front of the clock increments its value by 1 , until it arrives at 7 ; then, it returns to 0 and starts again.

Binary encoding of the automaton:

- State S_{i} is associated to the binary coding of $i \rightarrow 3$ bits $\rightarrow 3 \mathrm{FFs}$
- There is no input alphabeth
- Output characters are codified with their normal binary coding.

Synthesis of the upwise counter modulo 8 (2) SAPIENZA

$y_{2} y y_{1}^{10} 0$		
	x	x
01	x	x
11	0	1
10	0	0

$J_{0}=K_{0}=1$
$J_{1}=K_{1}=y_{0}$
$\mathrm{J}_{2}=\mathrm{K}_{2}=\mathrm{y}_{1} \mathrm{y}_{0}$

OBS.: FF0 commutes at every descending wave front of the clock;
FF1 commutes at every descending wave front of FF0;
FF2 commutes at every descending wave front of FF1.
We can then design a different counter MOD 8 where

- all FFs are in toggle modality ($\mathrm{J}=\mathrm{K}=1$)

FF0 uses as clock the clock signal;
FF1 uses as clock y_{0};
FF2 uses as clock y_{1}.
We call such a counter asynchronous because the FFs are not synchronized on the same clock (notice however that this is still a synchronous circuit, because a clock is present and FFs commute only at precise moments in time).

Implementation and temporal diagram

 of the asynchronous counter MOD 8

FF with asynchronous inputs

SAPIENZA

Sometimes, FFs are equipped with two further inputs, called PRESET and CLEAR, that work in an asynchronous way w.r.t. the clock: i.e., they are used to set ot reset the FF in an instantaneous way (independently from the usual inputs and from the clock).

CLR

cle

cLR

Behaviour:

- PRESET = CLEAR = 0: usual FF;
- $\operatorname{PRESET}=1$, CLEAR $=0$: immediate set of the FF;
- $\operatorname{PRESET}=0$, CLEAR $=1:$ immediate reset of the FF
- PRESET = CLEAR = 1 : not used.

