Synthesis of sequential nets
Prof. Daniele Gorla

Synthesis procedure through an example

Design a circuit that, taken in input a sequence of bits, gives in output 1 if and only if the number of 1 s received so far is a multiple of 3 .

Step 1. From the verbal specification to the (minimal) automaton
In our example, a number is multiple of 3 if it equals $3 \cdot k$, where k is a natural number ($3 \cdot 0,3 \cdot 1,3 \cdot 2,3 \cdot 3,3 \cdot 4, \ldots$). If n is the number of 1 s received so far, the desired automaton must check whether
$n=3 \cdot k \quad n=3 \cdot k+1$
And only in the first case produce in output 1 .
Let's asociate the first condition to q_{0}, the second condition to q_{1} and the third condition to q_{2}. The initial state is q_{0}.

A transition from q_{i} to $\mathrm{q}_{(i+1) \text { MOD } 3}$ happens every time a 1 arrives; by contrast, with 0 we remain in the current state.
q_{0} is the only state that produces 1 (Moore model).

Or, equivalently (it will be useful soon):

\rightarrow| | 0 | 1 |
| :---: | :---: | :---: |
| q_{0} | $\mathrm{q}_{0} / 1$ | $\mathrm{q}_{1} / 0$ |
| q_{1} | $\mathrm{q}_{1} / 0$ | $\mathrm{q}_{2} / 0$ |
| q_{2} | $\mathrm{q}_{2} / 0$ | $\mathrm{q}_{0} / 1$ |

It is easy to check that the automaton is minimal (all states are distinguishable)

The aim

Like for combinatorial circuits, the synthesis procedure aims at creating digital circuits starting from an abstract specification.

	Combinatorial	Sequential
Formal specification	TT	Automaton
Intermediate Representation	BEs	Future states table \& excitation function
Final Circuit	Logical gates + (acyclic) interconnections	Logical gates + (even cyclic) interconnections + FF

1. Automaton of the example

\square,

We have to represent the 3 sets Q, Σ and Δ in binary
REMARK: a set with n elements requires $\left\lceil\log _{2} n\right\rceil$ bits to be represented.

- every bit needed to represent the state is stored in a FF (it is the output y of the FF);
- every bit needed to represent an input character is an input of the circuit (it is one of the input variables x);
- every bit needed to represent an output character is an output of the circuit (it is one of the output variables z).

In our example, the input and output alphabeths are already coded in binary (they are exactly the set $\{0,1\}$).

Let's codify state q_{0} as $y_{1} y_{0}=00$ in the $\mathrm{FFs}, \mathrm{q}_{1}$ with $y_{1} y_{0}=01$ and q_{2} with $y_{1} y_{0}=10$ (the combination $y_{1} y_{0}=11$ is not used).

3. Future states table

We now turn the automaton to a table (that we call future states) where we provide the next state (i.e., that at time $t+1$) and output (at time t) as a function of the current state and of the input (both at time t).
This can be very easily done by starting from the tabular representation of the automaton (also from its drawing, of course...)

4. Excitation functions of the FFs

For every input of every FF , we add a new column to the future states table.
Every such a column is filled by relying on the excitation functions of the FFs, according to the current state (y) and the future one ($($)
The kind of the FFs can be either specified in the project or we can choose the one that generates the simplest final circuit.

$x \quad 181$ 1	$Y_{1} Y_{0}$	z	$s_{1} r_{1} s_{0} r_{0}$	$j_{1} k_{1} j_{0} k_{0}$	$d_{1} \quad d_{0}$	$t_{1} t_{0}$
0 (0) 0	$0 \sqrt{0}$	1				
$\begin{array}{llll}0 & 0 & 1\end{array}$	$\begin{array}{ll}0 & 1\end{array}$	0				
$\begin{array}{llll}0 & 1 & 0\end{array}$	10	0				
0 1	-	-				
1 (0) 0	(0) 1	0				
$\begin{array}{lll}1 & 0 & 1\end{array}$	10	0				
$\begin{array}{llll}1 & 1 & 0\end{array}$	$0 \quad 0$	1				
$\begin{array}{lll}1 & 1 & 1\end{array}$	--	-				

Encodings and Optimizations

SAPIENZA

OBS.: At step 2, we encoded in binary states and alphabeths; such encodings have an influence on the final size of the circuit!!

Ex.: For states, we used the encoding $\mathrm{q}_{0} \rightarrow 00, \mathrm{q}_{1} \rightarrow 01, \mathrm{q}_{2} \rightarrow 10$.
Let's see what happens with the encoding $\mathrm{q}_{0} \rightarrow 11, \mathrm{q}_{1} \rightarrow 01, \mathrm{q}_{2} \rightarrow 10$. For simplicity, let's ignore the output (it is not touched by the encoding of states) and let's consider D FFs only:

$$
\underbrace{\begin{array}{l}
d_{1}=\bar{y}_{0}+\bar{x} y_{1}+x \bar{y}_{1}=\bar{y}_{0}+\left(x \oplus y_{1}\right) \\
d_{0}=\bar{x} y_{0}+x y_{1}
\end{array}}_{6 \text { gates }}
$$

(8 gates with the previous encoding)

ng $\mathrm{q}_{0} \rightarrow 11, \mathrm{q}_{1} \rightarrow 01, \mathrm{q}_{2} \rightarrow 10$
x y_{1} y_{0} Y_{1} Y_{0} d_{1} d_{0} 0 0 0 - - - 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 - - - 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0

