## Analysis of sequential circuits

Given a sequential circuit, describe its behavior through an automaton

- Given the circuit schema, we should first have to identify the memory elements.
- In every moment, the memory of the system (that is, the binary values stored in all FFs) given the status of the circuit.
- For every possible state and input combination, we have to compute the output values and the next state by looking at the combinatorial part of the circuit.


According to the kind of FFs, we can establish the future states, by considering the current states and the inputs of the FFs.

| $x$ | $y_{2}$ | $y_{1}$ | $z_{2}$ | $z_{1}$ | $d_{2}$ | $d_{1}$ | $Y_{2}$ | $Y_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

## Analysis Procedure (4)

## SAPIENZA

Give symbolic name to every possible combination of bits stored in the FFs, to every possible input sequence and to every possible output sequence. Then, infer the transition and the output functions of the automaton.

REMARK: actually, giving symbolic names is not strictly necessary: everything could be left in binary, but this would make the automaton less readable.


## Analysis Procedure (5)

Minimize the obtained automaton, draw it and give a verbal description of its behavior (if possible).

REMARK: the initial state is arbitrary, unless it is not explicitly specified which values are initially stored in the FFs (tipically all 0s).

In our example, the automaton is already minimal: we can draw it as a Moore one (since the output is a characteristic of every state).


By taking $\mathrm{q}_{0}$ as starting state, this automaton is a counter of 1 s modulo 4



A second example (2)
0
SAPIENZA
Encoding: S0 $\rightarrow 000$, S1 $\rightarrow 001$, S2 $\rightarrow 010$, S3 $\rightarrow 011$,
S4 $\rightarrow$ 100, S5 $\rightarrow$ 101, S6 $\rightarrow 110$, S $7 \rightarrow 111$

| $y_{2}$ | $y_{1}$ | $y_{0}$ | $Y_{2}$ | $Y_{1}$ | $Y_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 |


| State $(t)$ | State $(t+1)$ |
| :---: | :---: |
| $\mathrm{S}_{0}$ | $\mathrm{~S}_{7}$ |
| $\mathrm{~S}_{1}$ | $\mathrm{~S}_{6}$ |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{0}$ |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ |
| $\mathrm{~S}_{4}$ | $\mathrm{~S}_{2}$ |
| $\mathrm{~S}_{5}$ | $\mathrm{~S}_{3}$ |
| $\mathrm{~S}_{6}$ | $\mathrm{~S}_{4}$ |
| $\mathrm{~S}_{7}$ | $\mathrm{~S}_{5}$ |



Clock signals counter modulo 6
Outputs are the bits stored in the FFs .
We can use the following encoding of outputs:
$000=0,111=1,101=2,011=3,100=4,010=5,001=-, 110=-$
Moreover, let's assume that at the outset FFs all store a 0


The automaton returns " 1 " every time it receives " 10 " without any preceding " 11 "; As soon as it reads " 11 ", returns " 1 " and the gives " 0 " for ever.

