

This makes also q_{3} and q_{4} indistinguishable, and so must be merged;
By contrast, q_{2} behaves differently and remains different.
Minimal automaton:

Algorithm for the minimal automaton (step 0: unreachable states) First cancel all unreachable states:

Algorithm for the minimal automaton

(3) SApienza
(step 1: triangular table) Sidity

We have to consider every pair of states, to check whether they are distinguishable or not.

q0						Useless because we alreadyconsider the symmetric pair
q1						
q2						in the lower part of the table
q3						
q4						
	q0	q1	q2	q3	q^{4}	not distinguishable

What remains is an lower triangular table where we can record the comparison between every pair of states (that can be distinguishable).

In this example, since the starting state is q 0 , state q 5 is unreachable REMARK: unreachability strongly depends on the starting state!
\rightarrow without knowing which is the starting state, we cannot deem any state unreachable!!

Algorithm for the minimal automaton

 (step 2: immediate distinguishability)- Check all cells one after the other
- In a cell put an X if the states are distinguishable
- Moore: states with different output;
- Mealy: states with an outgoing transition with same input but different output

Algorithm for the minimal automaton

(step 3: propagated distinguishability)

SAPIENZA

Check one after the other all non-marked cells; in a cell put

- X , if with the same input the two states reach a pair already marked with X ;
- O , if, for every possible input, you reach either the same state or a pair of states already marked with O or in the pair associated to the cell itself;
If none of the previous two conditions hold, mark the cell with all the pairs not yet marked and different from the pair associated that you can reach with
the same input. the same input.

Algorithm for the minimal automaton

(step 5: minimal automaton)
At the end, ALL equivalent pairs will be marked with O

So, from the triangular table we can derive the indistinguishability classes: two states are in the same class (and so are equivalent) if and only if the pair associated to them is marked with O in the table.

The minimal automaton has

- States formed by the indistinguishability classes;
- The initial state is the class that contains the old initial state;
- The transition function is obtained by putting

$$
(\operatorname{class}(\mathrm{q}), a) \rightarrow \operatorname{class}\left(\mathrm{q}^{\prime}\right) \quad \text { whenever }(\mathrm{q}, a) \rightarrow \mathrm{q}^{\prime} \in \delta
$$

- The output function is obtained by giving
- The output of q to the class of q (Moore)
- The output of $(\mathrm{q}, a) \rightarrow \mathrm{q}^{\prime}$ to the transition (class $\left.(\mathrm{q}), a\right) \rightarrow \operatorname{class}\left(\mathrm{q}^{\prime}\right) \quad$ (Mealy)

Algorithm for the minimal automaton

 (step 4: final marking of the table)SAPIENZAFor all cells that point to at least another pair of states, examine all the pointed pairs

- If they are marked with X , mark with X also the original cell;
- If they are marked with O, cancel the link to such pairs
- Otherwise, leave the link into the original cell.

At the end, every cell will either be marked with X or contain mo more pointer to any other pair, in this case it will be marked with O.

