Finite state automata
Prof. Daniele Gorla

A formalism for sequential nets

SAPIENZA

FFs are the simplest sequential nets, but provide the basic issues of such nets: - storage of boolean values (state)

- change of the stored values according to the input signals (state transitions)

Like TTs are the formalisms for representing combinatorial nets, we look for an analogous formalism for sequential nets.

To describe the behaviour of FFs, we used "extended" TTs, where the time aspect play a crucial role (y vs Y); such a formalism can be made more intuitive by representing it in a graphical way.

$$
\begin{aligned}
& \text { A state for every } \\
& \text { storahlo value }
\end{aligned}
$$

storable value

For every row of the table, we
have an arrow from a state
with the value of y to the
state with the value of Y. The arrow is labeled with the associated input sequence

Automata with output
 (SAPIENZA

To the definition of LTS, we can add an output alphabeth Δ and an output function λ, to obtain automaton with output, that is a 6 -tuple $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Delta, \mathrm{q}_{0}, \delta, \lambda\right)$.

To define the output function, we can naturally associate the output to states or to transitions; this yields two different models:

- Moore Automaton, in which $\lambda: \mathrm{Q} \rightarrow \Delta$
- Mealy Automaton, in which $\lambda: \mathrm{Q} \times \Sigma \rightarrow \Delta$

RMARK: δ is a function; so, for every pair $(\mathrm{q}, \mathrm{a}) \in(\mathrm{Q} \times \Sigma)$ there exists one and only one state reached by the automaton!!

In the previous example, we have that:

- $\mathrm{Q}=\{$ Mem0, Mem1 $\} ;$
- $\Sigma=\{00,01,10\} ;$
- $\delta:(\operatorname{Mem} 0,00) \rightarrow$ Mem0 $\quad(\operatorname{Mem} 1,00) \rightarrow$ Mem1
$(\operatorname{Mem} 0,01) \rightarrow \operatorname{Mem} 0 \quad(\operatorname{Mem} 1,01) \rightarrow \operatorname{Mem} 0$
$(\mathrm{Mem} 0,10) \rightarrow$ Mem1 $\quad(\mathrm{Mem} 1,10) \rightarrow$ Mem1
- What about q_{0} ? It depends to the initial value stored into the FF (typically, we assume 0)

Graphically, outputs are denoted by writing "/ b " (for $b \in \Delta$) after the name of the state (Moore model) or after the input character (Mealy model).

Ex.:

Moore model

Mealy model

Example: Drink-delivery machine

SAPIENZA

We'd like to model a concrete system that delivers drink cans:

- Cans costs 30c;

The machine only accepts coins of 10 c and 20 c
The machine delivers a can if the user has inserted at least 30c and gives no change (but holds the change for the next can).

The fundamental step to design an automaton is to understand what must be stored during the computation, that is defining the states and their meaning.

In this example, we have to remember the credit received after the last can delivery (or from the outset). How many different states? $0 c, 10 \mathrm{c}, 20 \mathrm{c} \rightarrow 3$ state

REMARK: we don't need states for 30 c or 40 c because in this case the machine delivers the can and comes back to state 0 c or 10 c , respectively.

Drink-delivery machine
graphical representation of the automaton) SAPIENZA

10c / can

Drink-delivery machine

(mathematical representation of the automaton) SAPIENZA

For simplicity, all these info's can be written down in a more compact way in the so-called tabular representation:

An evolved Drink-delivery machine

Sapienza

Previous example can be made more realistic by giving the user the possibility of choosing the desired can (e.g., coke or fanta)

This new specification, substantially modifies the automaton. Indeed, 3 states are no more enough, but we need 5 of then
\rightarrow previously, the can was delivered upon reaching 30c
\rightarrow now we have also to wait the choice of the can (this requires for the states 30 c and 40 c)
\rightarrow moreover, in such new states, if the user still adds more coins, the machine has to give them back, without changing state
 \rightarrow by contrast, in old states any can selection must be ignored, since the total of 30c has not yet been reached

REMARK: we have to consider all states and inputs, ince δ and λ are functions!

Example: automaton for
adding naturals
(2) SAPIENZA

IN: two bit sequences, $\mathrm{A}=a_{0} a_{1} a_{2} \ldots$ and $\mathrm{B}=b_{0} b_{1} b_{2} \ldots$
OUT: a bit sequence $s_{0} s_{1} s_{2} \ldots$ s.t., for every $i, s_{i} \ldots s_{0}=a_{i} \ldots a_{0}+b_{i} \ldots b_{0}$, by ignoring the final carry

Example:

SOLUTION

- The automaton receives input bits from the less to the more signifying ones; it produces the outputs in the same way
- This is similar to the way in which the sum is manually performed (also at the core of the combinatorial adder)
- The only info that we need for passing from bit i-th to bit $(i+1)$-th
is knowing whether at step i there was a carry or not
\rightarrow this will be the meaning of the states, that hence will be just 2

Example: automaton for calculating

 the remainder modulo 4
(8) SAPIENZA

IN: a bit sequence, $\mathrm{B}=b_{0} b_{1} b_{2}$
OUT: a sequence of bit pairs $r_{0} r_{0}^{\prime} r_{1} r_{1}^{\prime} \ldots$ s.t., for every i,

SOLUTION:

- In this example, the automaton receives bits from the most signifying it (new bits are enqueued)
- According to the reminder theorem, according to which the reminder in a division of a natural (in base 2) by 2^{k} is given by the k less signifying bits of the given number
- The only info we need when the i-th bit arrives is the values of the $(i-1)$-th bit, apart from the first one (for which no info is required)
\rightarrow we only have 2 states
\rightarrow the initial state is that associated to bit 0 , since the natural represented by bit b has the same reminder (modulo 4) as $0 b$

