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Finite state automata 
Prof. Daniele Gorla 

A formalism for sequential nets 
FFs are the simplest sequential nets, but provide the basic issues of such nets: 

•  storage of boolean values (state) 
•  change of the stored values according to the input signals (state transitions) 

Like TTs are the formalisms for representing combinatorial nets, 
we look for an analogous formalism for sequential nets. 
 
To describe the behaviour of FFs, we used “extended” TTs, where the time 
aspect play a crucial role (y vs Y); such a formalism can be made more intuitive 
by representing it in a graphical way. 

s     r   y Y
0   0   0 0
0   0   1 1
0   1   0 0
0   1   1 0
1   0   0 1
1   0   1 1

A state for every  
storable value 

Mem0 Mem1 
For every row of the table, we 
have an arrow from a state 
with the value of  y to the 
state with the value of  Y. The 
arrow is labeled with the 
associated input sequence 

00 00 

01 

01 

10 
10 

Labelled Transition System 
A Labelled Transition System (LTS) is a 4-tuple (Q,Σ,q0,δ) where: 

•  Q is a (finite) set of states; 
•  Σ is the input alphabeth;  
•  q0 ∈ Q is the initial state; 
•  δ: Q×Σ → Q is the transition function. 

  
REMARK: δ is a function; so, for every pair (q,a) ∈ (Q×Σ) there exists one 
and only one state reached by the automaton!!  
 
In the previous example, we have that: 

•  Q = {Mem0, Mem1}; 
•  Σ = {00,01,10}; 
•  δ:  (Mem0,00) → Mem0  (Mem1,00) → Mem1 

       (Mem0,01) → Mem0  (Mem1,01) → Mem0 
       (Mem0,10) → Mem1  (Mem1,10) → Mem1 

•  What about q0? It depends to the initial value stored into the FF 
(typically, we assume 0) 

Automata with output 
To the definition of LTS, we can add an output alphabeth Δ and an output function  
λ, to obtain automaton with output, that is a 6-tuple M = (Q,Σ,Δ,q0,δ,λ). 
 
To define the output function, we can naturally associate the output to states or to 
transitions; this yields two different models: 

•  Moore Automaton, in which  λ : Q → Δ 
•  Mealy Automaton, in which  λ : Q×Σ → Δ 

 
Graphically, outputs are denoted by writing  “/ b” (for b ∈ Δ) after the name of the 
state (Moore model) or after the input character (Mealy model). 
 
Ex.:  

  q0   q1 

0 0 
1 

1 

/c /d 

Moore model 

/d /c 

/d 

/c 

Mealy model 



11/11/20 

2 

Example: Drink-delivery machine 

We’d like to model a concrete system that delivers drink cans: 
•  Cans costs 30c; 
•  The machine only accepts coins of 10c and 20c; 
•  The machine delivers a can if the user has inserted at least 30c and gives 

no change (but holds the change for the next can). 
 

The fundamental step to design an automaton is to understand what must be 
stored during the computation, that is defining the states and their 
meaning. 

 
In this example, we have to remember the credit received after the last can 

delivery (or from the outset). How many different states? 
  0c, 10c, 20c  → 3 states 

 
REMARK: we don’t need states for 30c or 40c because in this case the 

machine delivers the can and comes back to state 0c or 10c, respectively. 

q0c

q10c

q20c

10c / no-can

10c / no-can

20c / can

20c / can

20c / no-can

10c / can

Drink-delivery machine 
(graphical representation of the automaton) 

Drink-delivery machine 
(mathematical representation of the automaton) 

10c 20c 

q0c q10c / no-can q20c / no-can 

q10c q20c / no-can q0c / can 

q20c q0c / can q10c / can 

Q = {q0c, q10c, q20c}
Σ = {10c, 20c} 
Δ = {no-can, can} 
Initial state: q0c 

 

δ: (q0c,10c) → q10c 
    (q0c,20c) → q20c 
    (q10c,10c) → q20c 

    (q10c,20c) → q0c 

    (q20c,10c) → q0c 

    (q20c,20c) → q10c 

λ: (q0c,10c) → no-can 
    (q0c,20c) → no-can 
    (q10c,10c) → no-can 

    (q10c,20c) → can 

    (q20c,10c) → can 

    (q20c,20c) → can 

For simplicity, all these info’s can be written down in a more  
compact way in the so-called tabular representation: 

An evolved Drink-delivery machine 

Previous example can be made more realistic by giving the user the possibility 
of choosing the desired can (e.g., coke or fanta) 

 
This new specification, substantially modifies the automaton. Indeed, 3 states 

are no more enough, but we need 5 of them: 
  → previously, the can was delivered upon reaching 30c 
  → now we have also to wait the choice of the can  
      (this requires for the states 30c and 40c) 
  → moreover, in such new states, if the user still adds more coins,  
      the machine has to give them back, without changing state 
  → by contrast, in old states any can selection must be ignored, since 
      the total of 30c has not yet been reached 

 
REMARK: we have to consider all states and inputs,  

      since δ and λ are functions! 
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q0c

q10c

q20c

10c / no-can

10c / no-can

20c / no-can

q40c

q30c

20c / no-can

10c / no-can

20c / no-can

20c / can

           10c / can

20c / can

        coke / coke
fanta / fanta

coke / coke
          fanta / fantacoke / no-can

   fanta / no-can

coke / no-can
   fanta / no-can

coke / no-can
   fanta / no-can

10c / 10c
20c / 20c

10c / 10c
20c / 20c

Evoled Drink-delivery machine 
Example: automaton for  
adding naturals 
IN: two bit sequences, A = a0 a1 a2 …  and  B = b0 b1 b2 …  
OUT: a bit sequence  s0 s1 s2 … s.t., for every i,  si … s0 = ai … a0 + bi … b0, by 

ignoring the final carry. 
  Example:  A:  0 1 1 0 0 1 0… 
    B:  1 0 1 0 1 1 1… 
          output:  1 1 0 1 1 0 0… 

 
SOLUTION:  
•  The automaton receives input bits from the less to the more signifying 

ones; it produces the outputs in the same way 
•  This is similar to the way in which the sum is manually performed (also at 

the core of the combinatorial adder) 
•  The only info that we need for passing from bit i-th to bit (i+1)-th  

 is knowing whether at step i there was a carry or not 
  → this will be the meaning of the states, that hence will be just 2 

Automaton for the adder 

qno-carry qcarry

0 0 / 0

0 1 / 1 1 0 / 1

1 1 / 0

0 0 / 1
1 1 / 1

0 1 / 0 1 0 / 0

Let’s check that the automaton behaves is the desired way: 
 

 A: 
 B: 

       output: 

0 
1 
1 

1 
0 
1 

1 
1 
0 

0 
0 
1 

0 
1 
1 

1 
1 
0 

0 
1 
0 

Example: automaton for calculating 
the remainder modulo 4 
IN: a bit sequence, B = b0 b1 b2 …  
OUT: a sequence of bit pairs  r0 r’0 r1 r’1 … s.t., for every i,  
          ri r’i = b0 … bi MOD 4. 

  Example:  B:  1 0 1 0 1 1 1… 
          output:  0 1 0 1 0 1 1… 
          1 0 1 0 1 1 1… 

SOLUTION:  
•  In this example, the automaton receives bits from the most signifying it (new 

bits are enqueued) 
•  According to the reminder theorem, according to which the reminder in a 

division of a natural (in base 2) by 2k is given by the k less signifying bits of 
the given number. 

•  The only info we need when the i-th bit arrives is the values of the (i–1)-th bit, 
apart from the first one (for which no info is required) 
  → we only have 2 states 
  → the initial state is that associated to bit 0, since the natural 

                  represented by bit b has the same reminder (modulo 4) as 0b 
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Automaton for reminders modulo 4 

q0
 / 00 q1 / 01

 0

 1

q'0 / 10

 0

q'1 / 11

 1
 0

 1

 1 0

This time we use Moore model: 

? 

The initial state can be q0 or q’0 , since in the Moore model the first output  
is usually ignored (it is a “default” output that is always produced, without   
considering any input) 


