

Sequential Nets

SAPIENZA

Up to now, we have only considered acyclic circuits.
This was due to the implicit assumption that gates are ideal, in the sense that they have a zero crossing time

Under this assumption, the following circuit is meaningless

because the value of y depends by itself (ill-founded definition)
In practice, gates have a non-zero crossing time, tipically modelled thorugh an ideal gate (with zer crossing time) and a delay τ

This introduces the time factor in circuits, che for this reason are called sequential nets.

To avoid $s=r=1$

(latch D) 8 SAPIENZA

A way for ensuring that $s=r=1$ never holds is the following:

This is a new latch, called lateh \mathbf{D} (delay), that stores the input d and produces it on the output y after crossing the NOT and NOR gates.

Circuit Representation
Characteristic table

