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Encoder, Decoder, ROM, PLA 
Multiplexer and Demultiplexer 
Prof. Daniele Gorla 

Encoder (4-to-2) 
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Input: 4 input lines, just one of them can hold “1” at any time 
Output: 2 output lines that yield the binary coding of the input line that 

 holds “1” 
x3 x2 x1 x0   y1 y0 
0  0  0  0    -   - 
0  0  0  1    0  0 
0  0  1  0    0  1 
0  0  1  1    -   - 
0  1  0  0    1  0 
0  1  0  1    -   - 
0  1  1  0    -   - 
0  1  1  1    -   - 
1  0  0  0    1  1 
1  0  0  1    -   - 
1  0  1  0    -   - 
1  0  1  1    -   - 
1  1  0  0    -   - 
1  1  0  1    -   - 
1  1  1  0    -   - 
1  1  1  1    -   - 

      x3  x2  00      01      11     10 
x1 x0 
  00  -         1        -       1 
  01  0         -        -       - 
  11  -         -        -       - 
  10  0         -        -       - 

y1 = x3 + x2

      x3  x2  00      01      11     10 
x1 x0 
  00  -         0        -       1 
  01  0         -        -       - 
  11  -         -        -       - 
  10  1         -        -       - 

y0 = x3 + x1

x3     x2        x1     x0 

 

 

 

    y1         y0 

x3     x2     x1     x0 

 

      y1 

       y0 

OR Matrix: 

Encoder 2n-to-n  
Generalized Encoder 
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Encoder 8-to-3: 
x7     x6     x5     x4 

 

  

x3     x2     x1     x0 

      y2 

      y1 

       y0 

Encoder 2n-to-n:  
The vertical line associated to 
xi contains the binary code of  
i, by considering to circle as a 
1 and absence of circle as  0. 

Generalized Encoder 
Input: n lines, just one of them holds “1” at any time 
Ouput: the (m bits) binary coding of  f(i), where  f is fixed and i is the line 
that holds 1 
 
Ex.: 
 f: 0 → 17 
    1 → 4 
    2 → 17 
    3 → 31 

x3 x2 x1 x0    y4 y3 y2  y1 y0 
0  0  0  1     1   0  0   0  1 
0  0  1  0     0   0  1   0  0 
0  1  0  0     1   0  0   0  1 
1  0  0  0     1   1  1   1  1 

x3     x2     x1     x0 
 

      y4 
      y3 
      y2 
      y1 
       y0 

Decoder 2-to-4 
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Input: 2 input lines 
Output: 4 output lines, just one of them can be “1”;  

 line i holds “1” whenever the input is the binary coding of i. 

x1 x0   y3 y2  y1 y0 
0  0    0   0   0   1 
0  1    0   0   1   0 
1  0    0   1   0   0 
1  1    1   0   0   0 

y1 = x1x0 =m1
y0 = x1x0 =m0

y3 = x1x0 =m3
y2 = x1x0 =m2

AND Matrix: 

x1     

 

x0 

           

                       y3   y2   y1   y0 

x1     

 

x0 

           

 

                      y3         y2          y1        y0 Easy to generalize to n-to-2n 
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ROM 
A ROM (Read Only Memory) is a circuit with n inputs (also called address 
lines) and m outputs (also called data lines).  
Within a ROM, the address lines select one of the 2n rows of a 2n×m matrix. 
Selecting row i-th allows us to read, on each of the m data lines, the binary 
value stored in the cell of coordinates (i , j), for j ∈{1,…,m}.  
It can be seen as the composition of a decoder and of a generalized encoder: 
 

    
  n       …           …            …     m 

 
 
i.e., an AND matrix (whose inputs are the address lines) whose outputs are the 
inputs an OR matrix (whose outputs are the data lines). 
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DEC 
 n-2n 

COD 
(gen) 
 2n-m 

Realizing FBs through a ROM 

A ROM can be used to realize m BFs  
       {0,1}n → {0,1}

Through a n-to-2n DEC (that is a 2n×m 
matrix), we "copy" the rightmost part of the 
truth table into the OR matrix of a generalized 
encoder 2n-to-m. 
On the exit associated to the minterm mi of the 
decoder (AND matrix), we put a  ¤  
corresponding to every 1 in the i-th row of the 
TT. 
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 x1 x0    y4 y3 y2  y1 y0 
 0  0     1   0  0   0  1 
 0  1     0   0  1   0  0 
 1  0     1   0  0   0  1 
 1  1     1   1  1   1  1 

x1     

 

x0 

            
 

      y4 
      y3 
      y2 
      y1 
       y0 

AND Matrix of 
  a 2-to-4 DEC 

OR Matrix of a  
4-to-5 generalized COD 

Physically, it is a diod, i.e. an 
elementar circuit that sends a 
signal from the exits of the DEC 
to the corresponding data line 
only if the signal is 1. 

ROM as a read-only memory 
The name ROM (read-only memory) derives from the fact that this 
combinatorial module can be seen as:  

•  A memory (i.e., a set of cells with fixed size, each with its own 
address) 

•  Non rewritable (hence, read-only) 
 
Ex.: 

        addresses   
       (2 bits)   

 
 
 
 
 
 
 

     memory cells (5 bits) 7 

x1     

 

x0 

            
 

      y4 
      y3 
      y2 
      y1 
       y0 

In the cell with address 2 (102)  
it was stored the number 17 (100012) 

The memory is read.only because, 
once diods have been welded, 
the stored values can be changed 
only by creating a different circuit 
(i.e., by welding diods in a different way) 
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x2  x1  x0 y1  y0 
0   0   0 0   0 
0   0   1 0   1 
0   1   0 0   0 
0   1   1 0   1 
1   0   0 0   0 
1   0   1 1   1 
1   1   0 0   1 
1   1   1 1   1 

 

 

 

 x2 
 x1 
 x0 

000 
001 
010 
011 
100 
101 
110 
111 

 y0  y1 

D 
E 
C 
O 
D 
E 
R 

REMARK: often, the decoder is not explicitly given (it is written as a 
black box). In this way, we only need to fill in the OR matrix, that for this 
reason is called the ROM matrix. 

OBS.1: a ROM realizes the DCF of the BFs 

OBS.2: some minterms are calculated in the DEC but are never used 
in the ROM matrix (e.g.: m0, m2 and m4 in the example above) 

ROM with a DECODER 
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PLA 

A PLA (Programmable Logic Array) is an integrated combinatorial net with n 
inputs, m outputs and three inner layers: a complementation layer, an AND 
matrix and an OR matrix. 
 
 
 
 
 
 

 →   like a ROM 
 
A PLA allows us to implement Bes in DNF, specifically minimal DNFs by 
allowing also the AND matrix (and not only the OR one) to be programmed 

 →   more efficient and cheaper than a ROM 
 

9 10 

A PLA is sold with all the n inputs both affirmed and negated; moreover, 
it has K AND gates and m OR gates whose inputs are not linked to 
anything.  
 
 
 
 
 
 

          schematic representation 
        real circuit      
 
 
Links are done by the user according to the specifications given, 
expressed as BEs in DNF. 
 
The user should then give the TT and find the minimal DNFs for each of 
the m BFs (more laborious than a ROM!!) 

Programming a PLA 

n 

K 

m 
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x1     

 

x0 

           

      y3 
      y2 
      y1 
       y0 

Example 

 x1 x0    y3 y2  y1 y0 
 0  0      0  0   0  1 
 0  1      0  1   0  0 
 1  0      0  0   0  1 
 1  1      1  1   1  1 

y3 = y1 = x1x0
y2 = x0
y0 = x1 + x0

x1 
 
x0 

 y3 
 
 y2 
 
 
 y1 
 
 
 y0 

Multiplexer (strict sense) 
Input: n data lines and n control lines, just one of wchich holds “1” at evry time 
Output: 1 line that returns the value on the i-th data line, if the i-th control line 

 holds 1. 
 
Ex. (n = 2) 

 x1 x0 k1 k0  y 
 0  0  0  1  0 
 0  1  0  1  1 
 1  0  0  1  0 
 1  1  0  1  1 
 0  0  1  0  0 
 0  1  1  0  0 
 1  0  1  0  1 
 1  1  1  0  1 
     In general: 

REMARK: lines with k1 = k0  
are don’t care 
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      x1  x0  00      01      11     10 
k1 k0 
  00  -         -        -       - 
  01  0        1       1       0 
  11  -         -        -       - 
  10  0        0       1       1 

y = x1k1 + x0k0

x0 

x1 

 xn-1 

 y 

 ... 

k0 

k1 

 kn-1 
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Multiplexer 
A multiplexer (MUX) is a combinatorial net with 
n inputs, one output and log2 n control lines. 
 
At every moment, output y is equal to the value of 
one of the inputs, xi. The value of i is given by the 
control lines: it is the value (expressed as a  natural 
number) that such lines codify in binary. 
 
A MUX is formed by a multi-entrance OR gate, the 
receives the outputs of n AND gates, that work like 
interruptors; finally, a DEC activates the 
interruptor selected by the control lines.  
 
REMARK: it is a strict sense multiplexer whose 
control lines are the outputs of the DEC. 
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 x0 
 x1 

 xn-1 

 c log2n  c1 

M  
U  
X 

 y 

 ... 

 ... 

DEC 

x0 

x1 

 xn-1 

 y 

c log2n c1 
 ... 

 ... 

14 

Demultiplexer (strict sense) 
Input: 1 data line and n control lines, just one holds “1” at every moment 
Output: n lines, where the i-th one holds the value of the data line if the i-th 

 control line holds 1. 
 
Ex. (n = 2) 

 x  k1 k0            y1 y0 
 0  0  1         0  0  
 1  0  1         0  1 
 0  1  0         0  0 
 1  1  0         1  0 
     In general: 

REMARK: rows with k1 = k0  
are don’t care 

y1 = xk1
y0 = xk0

x  y0 

 ... 

k0 

k1 

 kn-1 

 y1 

 yn-1 

 ... 
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Demultiplexer 
A demultiplexer (DEMUX) is a combinatorial net 
with one input, n outputs and log2 n control lines. 
 
At every moment, the output yi euqls the input, 
where the value of i is given by the control lines: it 
is the value (expressed as natural number) that the 
lines codify in binary. 
 
A DEMUX is made up by n AND gates, that work 
like interruptors, and a DEC that activated the 
interruptor selected by the control lines.  
 
REMARK: it is a demultiplexer in strict sense 
whose control lines are the outputs of the DEC. 

 c log2n  c1 

D 
E 
M  
U  
X 

 x 

 ... 

 y0 
 y1 

 yn-1 

 ... 

DEC 

x 

c log2n c1 
 ... 

 ... 

 y0 
 y1 

 yn-1 

 ... 

Use of MUX/DEMUX 
•   Parallel/serial transmission (MUX) and serial/parallel one (DEMUX) 

 → at given time intervals, we increase the control lines: 

 REMARK: to do this timing, we need a circuit (called counter) that we shall 
meet at the end of this course 

•   Use MUXs to compute BFs 
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DEMUX 
 1-2n 

MUX 
 2n-1 

b0 
b1 
b2 
 
… 
 
bn-1 

clog n-1 c1 c0 

0  0 … 0              0  0 … 0 0  0 … 1              0  0 … 1 0  0.. 1 0              0  0..1  0 1  1 ... 1              1  1 ... 1 
clog n-1 c1 c0 
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MUX to compute a BF (1) 
From the construction of a MUX, we have that 
 
 
 
 
 
 
Recall that an  n variables BF in FCD is  
 
So, given a BF with n variables:  
•  Use a MUX  with 2n inputs; 
•  The n control lines of the MUX are the n variables of the BF; 
•  The 2n data lines are put to "0" or "1" according to what is specified in the 

TT.  
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DEC 

x0 
x1 

 xn-1 

 y 

clog2n c1  ... 

 ... 

18 

x2 x1 x0 f 
0  0  0 0 
0  0  1 1 
0  1  0 0 
0  1  1 0 
1  0  0 0 
1  0  1 1 
1  1  0 0 
1  1  1 0 

 
 

  f 

x2 x1 x 0 

  0 

 1 

M  
U  
X 

000 
001 
010 
011 
100 
101 
110 
111 

Example 

MUX to compute a FB (2) 
To compute an n variables BF, we can also use a MUX with less than n 
control lines; in this case, some variables will be control lines and some others 
will be used in some BEs in the data lines (that are no more simply 0 or 1, in 
general). 
 
Ex. (n = 3):   

19 

x     y   z f
0   0   0 0
0   0   1 1
0   1   0 0
0   1   1 0
1   0   0 1
1   0   1 1
1   1   0 1
1   1   1 0

MUX 
4-to-1 

x   y 

 f  

f (000)z + f (001)z = 0z +1z = z

f (010)z + f (011)z = 0z +0z = 0

f (100)z + f (101)z =1z +1z =1

f (110)z + f (111)z =1z +0z = z

MUX 
4-to-1 

x   y 

 f  

 z 

 0 

 1 
_ 
z 


