Encoder (4-to-2)

Input: 4 input lines, just one of them can hold " 1 " at any time
Output: 2 output lines that yield the binary coding of the input line that holds " 1 "
$\frac{x_{3} x_{2} x_{1} x_{0} \mid y_{1} y_{0}}{00}$

0	0	0	0	-
0	0	0	1	0

| 0 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 1 |

$\begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & - \\ 0 & 1 & -\end{array}$

0	0	1	1	-	
0	1	0	0	1	0
0	1	0			

| 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | - |
| 0 | 1 | 1 | | - |

$\begin{array}{ll}0 & 11 \\ 0 & 1 \\ 0\end{array}$
$\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}$

| 1 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}1 & 0 & 0 & 1 \\ 1 & 0 & 1\end{array}$ -
$\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}$

OR Matrix:

ROM

SAPIENZA

A ROM (Read Only Memory) is a circuit with n inputs (also called address lines) and m outputs (also called data lines)
Within a ROM, the address lines select one of the 2^{n} rows of a $2^{n} \times m$ matrix
Selecting row i-th allows us to read, on each of the m data lines, the binary
value stored in the cell of coordinates (i, j), for $j \in\{1, \ldots, m\}$.
It can be seen as the composition of a decoder and of a generalized encoder

i.e., an AND matrix (whose inputs are the address lines) whose outputs are the inputs an OR matrix (whose outputs are the data lines).

Realizing FBs through a ROM

(2) SAPIENZA

x_{1}	x_{0}	y_{4}	$y_{3} y_{2}$	y_{1}	y_{0}	
0	0	1	0	0	0	1

0	1	0	0	1	0	0

$\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$

1	1	1	1	1	1	1

A ROM can be used to realize $m \mathrm{BFs}$

$$
\{0,1\}^{n} \rightarrow\{0,1\}
$$

Through a n-to- 2^{n} DEC (that is a $2^{n} \times m$ matrix), we "copy" the rightmost part of the truth table into the OR matrix of a generalized encoder 2^{n}-to- m.
On the exit associated to the minterm m_{i} of the decoder (AND matrix), we put a a corresponding to every 1 in the i-th row of the TT. TT.

\longrightarrow Physically, it is a diod, i.e. an elementar circuit that sends a signal from the exits of the DEC to the corresponding data only if the signal is 1 .

A PLA (Programmable Logic Array) is an integrated combinatorial net with n inputs, m outputs and three inner layers: a complementation layer, an AND matrix and an OR matrix.

\rightarrow like a ROM
A PLA allows us to implement Bes in DNF, specifically minimal DNFs by allowing also the AND matrix (and not only the OR one) to be programmed

$$
\rightarrow \text { more efficient and cheaper than a ROM }
$$

Programming a PLA

SAPIENZA

A PLA is sold with all the n inputs both affirmed and negated; moreover it has K AND gates and m OR gates whose inputs are not linked to anything.

expressed as BEs in DNF.
The user should then give the TT and find the minimal DNFs for each of the $m \mathrm{BFs}$ (more laborious than a ROM!!)

Demultiplexer (strict sense) SAPIENZA
 Input: 1 data line and n control lines, just one holds " 1 " at every moment

Output: n lines, where the i-th one holds the value of the data line if the i-th control line holds 1 .

Ex. ($n=2$)

x	k_{1}	k_{0}	y_{1}	y_{0}	$y_{1}=x k_{1}$
0	0	1	0	0	$y_{0}=x k_{0}$
1	0	1	0	1	
0	1	0	0	0	

In general:
REMARK: rows with $k_{1}=k_{0}$ are don't care
ws with $k_{1}=k_{0}$

Use of MUX/DEMUX

(2) SAPIENZA

- Parallel/serial transmission (MUX) and serial/parallel one (DEMUX) \rightarrow at given time intervals, we increase the control lines:

REMARK: to do this timing, we need a circuit (called counter) that we shall meet at the end of this course

- Use MUXs to compute BFs
MUX to compute a BF (1)
SAPIENZA
From the construction of a MUX, we have that

$$
y=\sum_{i=0}^{2^{n}-1} x_{i} \cdot m_{i}=\sum_{i: x_{i}=1} m_{i}
$$

Recall that an n variables BF in FCD is $f=\sum_{i: f\left(i_{2}\right)=1} m_{i}$
So, given a BF with n variables:

- Use a MUX with 2^{n} inputs;
- The n control lines of the MUX are the n variables of the BF;
- The 2^{n} data lines are put to " 0 " or " 1 " according to what is specified in the TT.

