
05/11/20

1

Encoder, Decoder, ROM, PLA
Multiplexer and Demultiplexer
Prof. Daniele Gorla

Encoder (4-to-2)

2

Input: 4 input lines, just one of them can hold “1” at any time
Output: 2 output lines that yield the binary coding of the input line that

 holds “1”
x3 x2 x1 x0 y1 y0
0 0 0 0 - -
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 - -
0 1 0 0 1 0
0 1 0 1 - -
0 1 1 0 - -
0 1 1 1 - -
1 0 0 0 1 1
1 0 0 1 - -
1 0 1 0 - -
1 0 1 1 - -
1 1 0 0 - -
1 1 0 1 - -
1 1 1 0 - -
1 1 1 1 - -

 x3 x2 00 01 11 10
x1 x0
 00 - 1 - 1
 01 0 - - -
 11 - - - -
 10 0 - - -

y1 = x3 + x2

 x3 x2 00 01 11 10
x1 x0
 00 - 0 - 1
 01 0 - - -
 11 - - - -
 10 1 - - -

y0 = x3 + x1

x3 x2 x1 x0

 y1 y0

x3 x2 x1 x0

 y1

 y0

OR Matrix:

Encoder 2n-to-n
Generalized Encoder

3

Encoder 8-to-3:
x7 x6 x5 x4

x3 x2 x1 x0

 y2

 y1

 y0

Encoder 2n-to-n:
The vertical line associated to
xi contains the binary code of
i, by considering to circle as a
1 and absence of circle as 0.

Generalized Encoder
Input: n lines, just one of them holds “1” at any time
Ouput: the (m bits) binary coding of f(i), where f is fixed and i is the line
that holds 1

Ex.:
 f: 0 → 17
 1 → 4
 2 → 17
 3 → 31

x3 x2 x1 x0 y4 y3 y2 y1 y0
0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1
1 0 0 0 1 1 1 1 1

x3 x2 x1 x0

 y4
 y3
 y2
 y1
 y0

Decoder 2-to-4

4

Input: 2 input lines
Output: 4 output lines, just one of them can be “1”;

 line i holds “1” whenever the input is the binary coding of i.

x1 x0 y3 y2 y1 y0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

y1 = x1x0 =m1
y0 = x1x0 =m0

y3 = x1x0 =m3
y2 = x1x0 =m2

AND Matrix:

x1

x0

 y3 y2 y1 y0

x1

x0

 y3 y2 y1 y0 Easy to generalize to n-to-2n

05/11/20

2

ROM
A ROM (Read Only Memory) is a circuit with n inputs (also called address
lines) and m outputs (also called data lines).
Within a ROM, the address lines select one of the 2n rows of a 2n×m matrix.
Selecting row i-th allows us to read, on each of the m data lines, the binary
value stored in the cell of coordinates (i , j), for j ∈{1,…,m}.
It can be seen as the composition of a decoder and of a generalized encoder:

 n … … … m

i.e., an AND matrix (whose inputs are the address lines) whose outputs are the
inputs an OR matrix (whose outputs are the data lines).

5

DEC
 n-2n

COD
(gen)
 2n-m

Realizing FBs through a ROM

A ROM can be used to realize m BFs
 {0,1}n → {0,1}

Through a n-to-2n DEC (that is a 2n×m
matrix), we "copy" the rightmost part of the
truth table into the OR matrix of a generalized
encoder 2n-to-m.
On the exit associated to the minterm mi of the
decoder (AND matrix), we put a ¤
corresponding to every 1 in the i-th row of the
TT.

6

 x1 x0 y4 y3 y2 y1 y0
 0 0 1 0 0 0 1
 0 1 0 0 1 0 0
 1 0 1 0 0 0 1
 1 1 1 1 1 1 1

x1

x0

 y4
 y3
 y2
 y1
 y0

AND Matrix of
 a 2-to-4 DEC

OR Matrix of a
4-to-5 generalized COD

Physically, it is a diod, i.e. an
elementar circuit that sends a
signal from the exits of the DEC
to the corresponding data line
only if the signal is 1.

ROM as a read-only memory
The name ROM (read-only memory) derives from the fact that this
combinatorial module can be seen as:

•  A memory (i.e., a set of cells with fixed size, each with its own
address)

•  Non rewritable (hence, read-only)

Ex.:

 addresses
 (2 bits)

 memory cells (5 bits) 7

x1

x0

 y4
 y3
 y2
 y1
 y0

In the cell with address 2 (102)
it was stored the number 17 (100012)

The memory is read.only because,
once diods have been welded,
the stored values can be changed
only by creating a different circuit
(i.e., by welding diods in a different way)

8

x2 x1 x0 y1 y0
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

 x2
 x1
 x0

000
001
010
011
100
101
110
111

 y0 y1

D
E
C
O
D
E
R

REMARK: often, the decoder is not explicitly given (it is written as a
black box). In this way, we only need to fill in the OR matrix, that for this
reason is called the ROM matrix.

OBS.1: a ROM realizes the DCF of the BFs

OBS.2: some minterms are calculated in the DEC but are never used
in the ROM matrix (e.g.: m0, m2 and m4 in the example above)

ROM with a DECODER

05/11/20

3

PLA

A PLA (Programmable Logic Array) is an integrated combinatorial net with n
inputs, m outputs and three inner layers: a complementation layer, an AND
matrix and an OR matrix.

 → like a ROM

A PLA allows us to implement Bes in DNF, specifically minimal DNFs by
allowing also the AND matrix (and not only the OR one) to be programmed

 → more efficient and cheaper than a ROM

9 10

A PLA is sold with all the n inputs both affirmed and negated; moreover,
it has K AND gates and m OR gates whose inputs are not linked to
anything.

 schematic representation
 real circuit

Links are done by the user according to the specifications given,
expressed as BEs in DNF.

The user should then give the TT and find the minimal DNFs for each of
the m BFs (more laborious than a ROM!!)

Programming a PLA

n

K

m

11

x1

x0

 y3
 y2
 y1
 y0

Example

 x1 x0 y3 y2 y1 y0
 0 0 0 0 0 1
 0 1 0 1 0 0
 1 0 0 0 0 1
 1 1 1 1 1 1

y3 = y1 = x1x0
y2 = x0
y0 = x1 + x0

x1

x0

 y3

 y2

 y1

 y0

Multiplexer (strict sense)
Input: n data lines and n control lines, just one of wchich holds “1” at evry time
Output: 1 line that returns the value on the i-th data line, if the i-th control line

 holds 1.

Ex. (n = 2)

 x1 x0 k1 k0 y
 0 0 0 1 0
 0 1 0 1 1
 1 0 0 1 0
 1 1 0 1 1
 0 0 1 0 0
 0 1 1 0 0
 1 0 1 0 1
 1 1 1 0 1
 In general:

REMARK: lines with k1 = k0
are don’t care

12

 x1 x0 00 01 11 10
k1 k0
 00 - - - -
 01 0 1 1 0
 11 - - - -
 10 0 0 1 1

y = x1k1 + x0k0

x0

x1

 xn-1

 y

 ...

k0

k1

 kn-1

05/11/20

4

Multiplexer
A multiplexer (MUX) is a combinatorial net with
n inputs, one output and log2 n control lines.

At every moment, output y is equal to the value of
one of the inputs, xi. The value of i is given by the
control lines: it is the value (expressed as a natural
number) that such lines codify in binary.

A MUX is formed by a multi-entrance OR gate, the
receives the outputs of n AND gates, that work like
interruptors; finally, a DEC activates the
interruptor selected by the control lines.

REMARK: it is a strict sense multiplexer whose
control lines are the outputs of the DEC.

13

 x0
 x1

 xn-1

 c log2n c1

M
U
X

 y

 ...

 ...

DEC

x0

x1

 xn-1

 y

c log2n c1
 ...

 ...

14

Demultiplexer (strict sense)
Input: 1 data line and n control lines, just one holds “1” at every moment
Output: n lines, where the i-th one holds the value of the data line if the i-th

 control line holds 1.

Ex. (n = 2)

 x k1 k0 y1 y0
 0 0 1 0 0
 1 0 1 0 1
 0 1 0 0 0
 1 1 0 1 0
 In general:

REMARK: rows with k1 = k0
are don’t care

y1 = xk1
y0 = xk0

x y0

 ...

k0

k1

 kn-1

 y1

 yn-1

 ...

15

Demultiplexer
A demultiplexer (DEMUX) is a combinatorial net
with one input, n outputs and log2 n control lines.

At every moment, the output yi euqls the input,
where the value of i is given by the control lines: it
is the value (expressed as natural number) that the
lines codify in binary.

A DEMUX is made up by n AND gates, that work
like interruptors, and a DEC that activated the
interruptor selected by the control lines.

REMARK: it is a demultiplexer in strict sense
whose control lines are the outputs of the DEC.

 c log2n c1

D
E
M
U
X

 x

 ...

 y0
 y1

 yn-1

 ...

DEC

x

c log2n c1
 ...

 ...

 y0
 y1

 yn-1

 ...

Use of MUX/DEMUX
•  Parallel/serial transmission (MUX) and serial/parallel one (DEMUX)

 → at given time intervals, we increase the control lines:

 REMARK: to do this timing, we need a circuit (called counter) that we shall
meet at the end of this course

•  Use MUXs to compute BFs

16

DEMUX
 1-2n

MUX
 2n-1

b0
b1
b2

…

bn-1

clog n-1 c1 c0

0 0 … 0 0 0 … 0 0 0 … 1 0 0 … 1 0 0.. 1 0 0 0..1 0 1 1 ... 1 1 1 ... 1
clog n-1 c1 c0

05/11/20

5

MUX to compute a BF (1)
From the construction of a MUX, we have that

Recall that an n variables BF in FCD is

So, given a BF with n variables:
•  Use a MUX with 2n inputs;
•  The n control lines of the MUX are the n variables of the BF;
•  The 2n data lines are put to "0" or "1" according to what is specified in the

TT.

17

DEC

x0
x1

 xn-1

 y

clog2n c1 ...

 ...

18

x2 x1 x0 f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

 f

x2 x1 x 0

 0

 1

M
U
X

000
001
010
011
100
101
110
111

Example

MUX to compute a FB (2)
To compute an n variables BF, we can also use a MUX with less than n
control lines; in this case, some variables will be control lines and some others
will be used in some BEs in the data lines (that are no more simply 0 or 1, in
general).

Ex. (n = 3):

19

x y z f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

MUX
4-to-1

x y

 f

f (000)z + f (001)z = 0z +1z = z

f (010)z + f (011)z = 0z +0z = 0

f (100)z + f (101)z =1z +1z =1

f (110)z + f (111)z =1z +0z = z

MUX
4-to-1

x y

 f

 z

 0

 1
_
z

