
05/11/20

1

Design of remarkable circuits: adder, comparator,
complementer and subtractor
Prof. Daniele Gorla

Parallel Adder at n bits

Request: design a binary adder that performs the arithmetical sum of two n
bits strings A = an-1…a0 and B = bn-1…b0, seen as natural numbers.

Idea: compute the sum as we are used to

•  Sum the less signifying bits a0 and b0;
•  This generates the less signifying bit of the result s0 and a possible carry c1;
•  Now sum a1, b1 and c1; this generates s1 and c2;
•  …and so on until the most signifying bits;
•  If the last sum yields a carry c, then there is an overflow.

2

The elementary cell HA

s a b
c ab
= ⊕

=

3

 b a s c
 0 0 0 0
 0 1 1 0
 1 0 1 0
 1 1 0 1

The sum of a0 and b0 (here, simply denoted as a and b) does not have to
consider any preceding carry (it is the first sum of the sequence);
however, it can generate a carry c:

The elementary cell FA

s = (a⊕ b)c + (a⊕ b)c = (a⊕ b)⊕ c
c ' = ac+bc+ ab

4

c b a s c’
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

If we denote with c the carry coming from the sum of ai-1 and bi-1, and
with c’ the carry from the sum of ai and bi, we have the following truth
table for the circuit that sums ai and bi (here, simply called a and b):

05/11/20

2

A Uniform Adder

Having two elementary circuits (HA and FA) makes the project
more complex and costy.

To simplify, we can adopt a “uniform” version of the adder that
only relies on FAs: it suffices to set the initial carry at 0 in the
first elementary cell (that for the less signifying bits).

REMARK: in this way, we have a few more gates, but I have to
produce one single kind of elementary cell!!

5

Adder for integer numbers

As we saw, for integers represented in 2-complement the sum is
done exactly in the same way; hence, the circuit is the same!

The only difference is the overflow condition:

•  For naturals, we just have to check the last carry bit (1 → overflow)
•  For integers, we have an overflow if

•  Operands have the same sign that is different from the result’s sign
•  We obtain the “forbidden” sequence 10…0

Hence, the BE associated to the overflow for integers is

6

an−1bn−1sn−1 + an−1bn−1sn−1 + sn−1sn−2...s0

Opposite and Subtraction

Opposite
Recall that the opposite of B = bn-1…b0 is , we have that the
circuit for calculating the opposite of a number is:

 B
 ADD –B
 0…01

Subtraction
To compute A – B, we can do A + (–B) and so the circuit for the difference is:

 A
 ADD A – B

 B OPP

7

bn−1...b0 +1

Arithmetical Comparator

8

Problem: given two binary n bits strings A and B representing two
natural numbers, establish whether A > B, A = B or A < B.
The circuit will be something like

where: - c> = 1 iff A > B
 - c< = 1 iff A < B
 - c= = 1 iff A = B

OBS.: c< = NOR(c> , c=); hence, we shall only
design circuits for computing c> e c= , from which

05/11/20

3

9

The idea is similar to the adder, with the circuit made up of n elementary
comparator cells put in cascade.
To this aim, we use some partial results defined as follows:

 for every i = 1, … , n
 • ci

> = 1 iff ai–1 …a0 > bi–1 …b0
 • ci

= = 1 iff ai–1 …a0 = bi–1 …b0

 a0 b0

0
1

c1
>

c1
=

 a1 b1

. . .

 an-1 bn-1

cn
>

c<

cn
=

c2
>

c2
=

cn-1
>

cn-1
=

Structure of the comparator The elementary comparing cell

The truth table for CMP is

 a b c > c = c’ > c’ =
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 - -
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 - -
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 - -
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 1 0
1 1 1 1 - -

10

Synthesis of c’>

11

a b

c> c=

00 01 11 10

00

01

11

10

0 0 0 1

0 0 0 1

- - - -

1 0 1 1

The KM is

from which c '
>
= ab + ac

>
+bc

>
= ab + (a+b)c

>

Synthesis of c’=

12

a b

c> c=

00 01 11 10

00

01

11

10

0 0 0 0

1 0 1 0

- - - -

0 0 0 0

The KM is:

from which c '
=
= abc

=
+ abc

=
= (ab + ab)c

=
= (a⊕ b)c

=

05/11/20

4

Circuit Schema

13

a

b

c>

c=

c’>

c’=

