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Design of remarkable circuits: adder, comparator, 
complementer and subtractor  
Prof. Daniele Gorla 

Parallel Adder at n bits 

Request: design a binary adder that performs the arithmetical sum of two n 
bits strings  A = an-1…a0  and  B = bn-1…b0, seen as natural numbers. 

 
Idea: compute the sum as we are used to 

•  Sum the less signifying bits a0 and b0; 
•  This generates the less signifying bit of the result s0 and a possible carry c1; 
•  Now sum a1, b1 and c1; this generates s1 and c2; 
•  …and so on until the most signifying bits; 
•  If the last sum yields a carry c, then there is an overflow. 
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The elementary cell HA 

s a b
c ab
= ⊕

=
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   b   a  s   c 
   0   0 0  0 
   0   1 1  0 
   1   0 1  0 
   1   1 0  1 

 

The sum of a0 and b0 (here, simply denoted as a and b) does not have to 
consider any preceding carry (it is the first sum of the sequence); 
however, it can generate a carry c: 

The elementary cell FA 

s = (a⊕ b)c + (a⊕ b)c = (a⊕ b)⊕ c
c ' = ac+bc+ ab
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c   b   a  s   c’ 
0   0   0 0  0 
0   0   1 1  0 
0   1   0 1  0 
0   1   1 0  1 
1   0   0 1  0 
1   0   1 0  1 
1   1   0 0  1 
1   1   1 1  1 

 

If we denote with c the carry coming from the sum of ai-1 and bi-1,  and 
with c’  the carry from the sum of ai and bi, we have the following truth 
table for the circuit that sums ai and bi (here, simply called a and b): 
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A Uniform Adder 

Having two elementary circuits (HA and FA) makes the project 
more complex and costy. 
 
To simplify, we can adopt a “uniform” version of the adder that 
only relies on FAs: it suffices to set the initial carry at 0 in the 
first elementary cell (that for the less signifying bits). 
 
REMARK: in this way, we have a few more gates, but I have to 
produce one single kind of elementary cell!! 
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Adder for integer numbers 

As we saw, for integers represented in 2-complement the sum is 
done exactly in the same way; hence, the circuit is the same! 
 
The only difference is the overflow condition: 

•  For naturals, we just have to check the last carry bit (1 → overflow) 
•  For integers, we have an overflow if 

•  Operands have the same sign that is different from the result’s sign 
•  We obtain the “forbidden” sequence 10…0 

 
Hence, the BE associated to the overflow for integers is 
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an−1bn−1sn−1 + an−1bn−1sn−1 + sn−1sn−2...s0

Opposite and Subtraction 

Opposite 
Recall that the opposite of B = bn-1…b0  is                    ,  we have that the 
circuit for calculating the opposite of a number is: 
 

  B 
          ADD  –B   
   0…01 

 
Subtraction 
To compute A – B, we can do A + (–B) and so the circuit for the difference is: 
 

  A 
            ADD  A – B 

 
  B  OPP 
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bn−1...b0 +1

Arithmetical Comparator 
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Problem: given two binary n  bits strings  A  and  B  representing two 
natural numbers, establish whether  A > B,  A = B  or  A < B. 
The circuit will be something like 

where:   -    c>  =  1  iff  A > B 
  -    c<  =  1  iff  A < B 
  -    c=  =  1  iff  A = B 

 
OBS.: c< = NOR(c> , c=);  hence, we shall only 
design circuits for computing c> e c= , from which 
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The idea is similar to the adder, with the circuit made up of  n elementary 
comparator cells put in cascade.  
To this aim, we use some partial results defined as follows: 

 for every   i  =  1, … , n   
  •  ci

> = 1   iff   ai–1 …a0  >  bi–1 …b0 
  •  ci

= = 1   iff   ai–1 …a0  =  bi–1 …b0 

 a0 b0

0
1

c1
>

c1
=

 a1 b1

. . .

 an-1 bn-1

cn
>

c<

cn
=

c2
>

c2
=

cn-1
>

cn-1
=

Structure of the comparator The elementary comparing cell 

The truth table for  CMP  is 
 

    a        b        c >      c = c’ >       c’ = 
0        0        0        0 0           0 
0        0        0        1 0           1 
0        0        1        0 1           0 
0        0        1        1 -            - 
0        1        0        0 0           0 
0        1        0        1 0           0 
0        1        1        0 0           0 
0        1        1        1 -           - 
1        0        0        0 1           0 
1        0        0        1 1           0 
1        0        1        0 1           0 
1        0        1        1 -           - 
1        1        0        0 0           0 
1        1        0        1 0           1 
1        1        1        0 1           0 
1        1        1        1 -           - 
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Synthesis of c’> 
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a  b      

 
c>   c= 

 
00       01      11       10 

 
00 

 
01 

 
11 

 
10 

 
0          0         0         1 

 
0          0         0         1 

 
-           -          -          - 

 
1          0         1         1 

 

The KM is 

 

 

 

 

 

 

 

from which c '
>
= ab + ac

>
+bc

>
= ab + (a+b )c

>

Synthesis of c’= 
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a   b 

 
c>   c= 

 
00       01      11       10 

 
00 
 

01 
 

11 
 

10 

 
0          0         0         0 

 
1          0         1         0 

 
-           -          -          - 

 
0          0         0         0 

 

The KM is: 

 

 

 

 

 

 

 

from which c '
=
= abc

=
+ abc

=
= (ab + ab)c

=
= (a⊕ b)c

=
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Circuit Schema 
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a

b

c>

c=

c’>

c’=


