

Request: design a binary adder that performs the arithmetical sum of two n bits strings $\mathrm{A}=a_{n-1} \ldots a_{0}$ and $\mathrm{B}=b_{n-1} \ldots b_{0}$, seen as natural numbers.

Idea: compute the sum as we are used to

- Sum the less signifying bits a_{0} and b_{0},
- This generates the less signifying bit of the result s_{0} and a possible carry c_{1};
- Now sum a_{1}, b_{1} and c_{1}; this generates s_{1} and c_{2}
- ...and so on until the most signifying bits;
- If the last sum yields a carry c, then there is an overflow.

The elementary cell HA
The sum of a_{0} and b_{0} (here, simply denoted as a and b) does not have to consider any preceding carry (it is the first sum of the sequence);
however, it can generate a carry c :

$s=a \oplus b$
$c=a b$

The elementary cell FA
If we denote with c the carry coming from the sum of a_{i-1} and b_{i-1}, and with c ' the carry from the sum of a_{i} and b_{i}, we have the following truth table for the circuit that sums a_{i} and b_{i} (here, simply called a and b):

c	b	a	s	c
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$s=(a \oplus b) \bar{c}+\overline{(a \oplus b) c}=(a \oplus b) \oplus c$ $c^{\prime}=a c+b c+a b$

Having two elementary circuits (HA and FA) makes the project more complex and costy.

To simplify, we can adopt a "uniform" version of the adder that only relies on FAs: it suffices to set the initial carry at 0 in the first elementary cell (that for the less signifying bits).

REMARK: in this way, we have a few more gates, but I have to produce one single kind of elementary cell!!

Adder for integer numbers

SAPIENZA

As we saw, for integers represented in 2-complement the sum is done exactly in the same way; hence, the circuit is the same!

The only difference is the overflow condition.
For naturals, we just have to check the last carry bit ($1 \rightarrow$ overflow)
For integers, we have an overflow if

- Operands have the same sign that is different from the result's sign
- We obtain the "forbidden" sequence $10 \ldots 0$

Hence, the BE associated to the overflow for integers is

$$
a_{n-1} b_{n-1} \bar{s}_{n-1}+\bar{a}_{n-1} \bar{b}_{n-1} s_{n-1}+s_{n-1} \bar{s}_{n-2} \cdots \bar{s}_{0}
$$

Arithmetical Comparator

SA SAPIENZA

Problem: given two binary n bits strings \mathbf{A} and \mathbf{B} representing two
natural numbers, establish whether $\mathbf{A}>\mathbf{B}, \mathbf{A}=\mathbf{B}$ or $\mathbf{A}<\mathbf{B}$
The circuit will be something like

where:

$$
\begin{array}{llll}
- & c_{>}=1 & \text { iff } & \mathbf{A}>\mathbf{B} \\
- & c_{<}=1 & \text { iff } & \mathbf{A}<\mathbf{B} \\
- & c_{=}=1 & \text { iff } & \mathbf{A}=\mathbf{B}
\end{array}
$$

OBS . $c_{c}=\operatorname{NOR}(c, c)$; hence, we design circuits for computing $c_{>} \mathrm{e} c_{=}$, from whi

