Combinatorial Net

A combinatorial net is a digital electronic circuit that can automatically compute a BF.
An electronic circuit is a system made up by elementary gates acyclically interconnected.

Lines entering into gates that do not exit from other gates are the inputs. Exits of gates that do not enter in other gates are the outputs.

Inductive Definition of
Combinatorial Net SAPIENZA
A combinatorial net with one output (CN1) is inductively defined as:

- a line connecting input x to output z
is a CN 1 ;
- if R is a CN 1 and $o p$ is a unary gate (NOT), then also
is a CN 1 ;

$$
R \rightarrow o p \rightarrow
$$

- if R_{1} and R_{2} are CN 1 and $o p$ is a binary gate (AND, OR, NOR, NAND, XOR, XNOR), then also

$$
\begin{aligned}
& R_{1} \\
& R_{2}
\end{aligned} \rightarrow o p \rightarrow
$$

is a CN1, once inputs with the same label are joint together.
A combinatorial net with \boldsymbol{m} outputs (simply, combinatorial net, CN) is the justapposition of $m \mathrm{CN1}$ obtained by joining inputs with the same label.

Relation between Bes and CNs

 SAPIENZAFor every BE there exists a unique CN (actually, CN1) made up by NOT, AND \& OR gates that computes it.

Procedure:

1. Given a BE, write it in a hierarchical way, by putting at the top level the last operators (out-most); variables will be at the bottom level
\rightarrow pay attention to the precedence rules for operators

$$
(->\cdot>+)
$$

2. Clockwise turn this representation by 90°; this gives you the structure of the CN , with inputs at left and outputs at right
3. Turn every operator in the corresponding gate and link every gate of every level to a gate of the next level by a line

Example

SAPIENZA

$$
x+\overline{\bar{y} \cdot z}
$$

REMARK: by using NAND, NOR, XOR and XNOR gates, we loose unicity!
Ex.:

Summing up:

relations between BFs, TTs, BEs and CNs SApienza

TTs.

Analysis of CNs

SAPIENZA

AIM: given a CN , find the computed BF

STEPS: $\mathrm{CN} \rightarrow{ }^{1} \rightarrow \mathrm{BE} \rightarrow{ }^{2} \rightarrow \mathrm{TT}(=\mathrm{BF})$
Step 1 has been just considered in this class
Step 2 can be done by using one of the many methods for passing from a BE to a TT:

- Perfect induction: consider all the possible truth values to the variables and incrementally build the TT
- By using DNFs, DCFs, CNFs or CCFs

Example (2)

SAPIENZA

From the verbal description to the TT:

$\begin{array}{llll}0 & 0 & 01 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0\end{array}$
011
100
$\begin{array}{lll}01 & 1 \\ 0\end{array}$
110
111
1000
10
1001
$\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}$
1011
$\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 \\ 1 & 0 & 1\end{array}$
1
1
1
1
1
0
0
0
0
0
0
0
0
$T=0$ if $V=0, C=1$ and $L=0$ The tap must be closed if

1. the tank is full; or 1. the tank is full; or
2. the drain valve is closed, the reagents concentration is enough and the water level is not low.

$$
T=0 \text { if } T k=1
$$

$\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 \\ 1 & 1 & 1\end{array}$
110
111 1
$T k=1$ iff the tank is full; $V=1$ iff the valve is open;
$C=1$ iff the concentration is
$L=1$ enough;
$L=1$ iff the water level is low;

$$
T=1 \text { iff the tap is open. }
$$

$T=1$ iff the tap is open.

元

Example (3)

SAPIENZA

Karnaugh Map:

Minimal DNF: $T=\overline{T k} V+\overline{T k} \bar{C}+\overline{T k} L$
Minimal BE: $\quad T=\overline{T k}(V+\bar{C}+L)$
OBS.: this is a minimal POS that we'd

Have obtained from the KM by covering the $0 s$

A second example (1)

SAPIENZA
Design a combinatorial circuit that receives in input bit quadruples with an even number of 1 s and returns 1 if the number of 1 s equals the number of "0s".

SOLUTION:
In this case, we have 4 input variables, one for every bit of the quadruple;
moreover, configurations with an odd number of "1s" will never appear, hence, we shall use don't care symbols for such quadruples.

$x y z t$	f
0000	0
0001	-
0010	-
0011	1
0100	-
0101	1
0110	1
0111	-
1000	-
1001	1
1010	1
1011	-
1100	1
1101	-
1110	-
1111	0

