

Minimizing BEs

Minimizing expressions arises from reducing the number of logic gates needed to realize a circuit.

This fact has consequences on:
COST: With the technology of medium-scale, high-scale and very highscale integrated circuits (MSI, LSI and VLSI) this aspect is less crucial. However, the size of the circuit still matters (mostly with the development of nano technologies).

CROSSING TIME: The time to produce an output depends on the number of traversed gates: reducing this number can affect performances

$$
\begin{array}{cc|c}
x & y & f \\
\hline 0 & 0 & f_{00} \\
0 & 1 & f_{01} \\
1 & 0 & f_{10} \\
1 & 1 & f_{11}
\end{array}
$$

m_{0} must be close to m_{1} and m_{2}
m_{1} must be close to m_{0} and m_{3}
m_{2} must be close to m_{0} and m_{3}

m_{3} must be close to m_{1} and m_{2}

KMs for 3 variables functions

 SAPIENZA```
llll:
lll
llll
llll
llll
llll
llllll
```

$m_{0}$ must be close to $m_{1}, m_{2}$ and $m_{4}$ $m_{1}$ must be close to $m_{0}, m_{3}$ and $m_{5}$ $m_{2}$ must be close to $m_{0}, m_{3}$ and $m_{6}$ $m_{3}$ must be close to $m_{1}, m_{2}$ and $m_{7}$ $m_{6}$ must be close to $m_{2}, m_{7}$ and $m_{4}$ $m_{7}$ must be close to $m_{3}, m_{6}$ and $m_{5}$ $m_{4}$ must be close to $m_{0}, m_{5}$ and $m_{6}$ $m_{5}$ must be close to $m_{1}, m_{4}$ and $m_{7}$


## KMs covering and minimal DNFs

## SAPIENZA

An implicant corresponds to a rectangle made up by $2^{k} 1 \mathrm{~s}$, i.e. $2^{k}$ minterms at unitary distance

An implicant is said prime if no other bigger implicant fully contains it

An implicant is said essential if it contains at least one 1 that is covered by any other implicant

A minimal covering of a KM is a minimal set of prime and essential implicants

A minimal DNF for the BF associated to the KM is built by summing the products associated to a minimal covering

## Implicants for the KM of the ternary OR

## SAPIENZA



This rectangle is an implicant that represents the minterm $\bar{a} b c$


This rectangle is an implicant that represents the sum of minterms $\bar{a} b c+\bar{a} b \bar{c}=\bar{a} b$


This rectangle is a prime implicant that represents the sum of minterms
$\bar{a} b c+\bar{a} b \bar{c}+a b \bar{c}+a b c=\bar{a} b+a b=b$


## Prime Implicants for the KM of the ternary OR <br> SAPIENZA

The product is formed by the variables that assume the same value on all the 1 s of the rectangle

Every variable is affirmed, if its value is 1 on all the rectangle, negated otherwise

Ex.:

$1 \times 1$ Rectangle, where $a=0$ \& $b=c=1$ hence, the associated product is $m_{3}$
$2 \times 1$ Rectangle, where $a=0$ \& $b=1$ hence, the associated product is $\bar{a} b$
$2 \times 2$ Rectangle, where $b=1$ hence, the associated product is


Hence, a (actually, the) minimal DNF for this BF is $a+b+c$


Minimal expressions by using other gates

KMs give minimal BEs in $D N F$

We can obtain BEs with less operators by working on the minimal DNFs, By using other operators (NOR, NAND, XOR, XNOR)

Ex.:


1. Cover the 0 s with rectangles of size $1,2,4,8$ or 16
2. For every rectangle, build the associated sum of literals
(by duality, we take the negated literal if the variable holds 1 , affirmed otherwise)

Ex.:

minimal CNF: $(x+\eta)(z+t)$

Partial BFs 2. SAPIENZA

It is possible that the BF is not defined on all $\{0,1\}^{n}$ but only on some $n$-tuples

In this case, the $n$-tuples where it is NOT defined can be associated to any boolean value, so that the DNF (or CNF) becomes as small ss possible

Ex.:

| $x y z$ | $f$ |  |
| :--- | :--- | :--- |
| 00 | 0 | 0 |


| 0 | 0 | 0 |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 |


| 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 |


| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}1 & 0 & 0 & 1 \\ 1\end{array}$

| 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |

110
111


We know that $x$ and $y$ cannot be simultaneously at 1
$\qquad$ and as 0

