

BFs vs BEs

SAPIENZA

Theorem: for every BE there exists a unique associated BF Proof:

- Through perfect induction, we build the truth table
- this describes the associated BF

The converse does NOT hold: for every BF there exist infinitely many equivalent BEs

Example

Bes that have this truth table are (among the others): canonical BE associated.

From a BF to the (disjunctive) canonical form

$$
\begin{array}{l|l}
x y & f \\
\hline 00 & 0
\end{array}
$$

$$
\begin{array}{ll|l}
0 & 1 & 0 \\
& 0 & 0
\end{array}
$$

$$
\begin{array}{ll|l}
1 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
& f \text { holds } 1 \text { if and only if } x=1 \text { and } y=1 \\
& \text { i.e., if and only if } x \cdot y=1 \\
& \text { Hence, } f=x \cdot y \\
& f \text { holds } 1 \text { if and only if } x=1 \text { and } y=0 \text { (that is, }, \bar{y}=1 \text {) } \\
& \text { i.e., if and only if } x \cdot \bar{y}=1 \\
& \text { Hence, } f=x \cdot \bar{y}
\end{aligned}
$$

Let's assume to have n variables $\left\{x_{1}, \ldots, x_{n}\right\}$:
Every occurence of a variable, either in simple form x_{i} or negated \bar{x}_{i}, is called literal.

A minterm is a product of n literals $l_{1} \cdot \ldots \cdot l_{n}$ such that $l_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$, for every $i \in\{1, . ., n\}$

A Disjunctive Canonical Form (or SOP canonical form), is a sum (or disjunction, hence the name) of pairwise distinct minterms.

Example ($n=3$):

$$
x_{1} x_{2} x_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}
$$

DCFs and BFs

SAPIENZA
Let f be a function in the n variables $\left\{x_{1}, \ldots, x_{n}\right\}$:
A minterm m is an implicant of f if, for every $b_{1} \ldots b_{n} \in\{0,1\}^{n}$,

$$
m\left(b_{1} \ldots b_{n}\right)=1 \Rightarrow f\left(b_{1} \ldots b_{n}\right)=1
$$

The DCF associated to f is the DCF that contains all and only the minterms that are implicants of f.

Ex.:

OBS: for every minterm m, there esists a unique n-tupla of bits that
make it 1 make it 1.

$$
\text { Ex.: } \quad \bar{x}_{3} x_{2} \bar{x}_{1} \text { holds } 1 \text { iff } x_{3}=x_{1}=0 \text { and } x_{2}=1
$$

In general, the n-tupla can be obtained by giving 1 to the variables that occur simple in m and 0 to those that occur negated.

Hence, we can create a bijection between the 2^{n} minterms with $\{0,1\}^{n}$:

$$
m \leftrightarrow b_{1} \ldots b_{n} \quad \text { iff } \quad m\left(b_{1} \ldots b_{n}\right)=1
$$

If m corresponds to $b_{1} \ldots b_{n}$ in this bijection and $b_{1} \ldots b_{n}$, seen as a natural number codified in binary with n bits, corresponds to the decimal number k, then m will be called m_{k}.

Ex.: $\bar{x}_{3} x_{2} \bar{x}_{1}$ corresponds to 010 ; having $010_{2}=2_{10}$, we shall call m_{2} such a minterm.

From DCF to the BF and vice versa

- Given a BF, the associated DCF can be obtained by taking all the rows where the BF holds 1 and by considering all the minterms associated to such rows.
- Given a DCF, the associated BF can be obtained by putting 1 in all rows whose binary strings correspond to the minterms in the DCF and 0 elsewhere.

Ex.:		DCF: $m_{1}+m_{3}+m_{5}+m_{6}+m_{7}$
$x_{3} x_{2} x_{1}$	f	
000 001	0 1	
010	0	
011	1	
100	0	
101	1	
110	1	
111	1	

From a BE to its DCF

Sapienza

Let E be any BE.

1. Push all its negations directly on its variables (De Morgan) and delete double negations (involution)
2. Turn the resulting expression in SOP form, by using distributivity of - over +
3. Delete possible copies of the summands (idempotency) and the products that contain a literal and its negation (complement and annihilator)

We now have a form disjunctive normal form (or SOP normal form),
i.e., a SOP whose summands are not minterms, in general.
4. Multiply every summand that does not contain x_{i} with $\left(x_{i}+\bar{x}_{i}\right)$ (neutral and complement)
5. Turn the resulting expression in SOP form, by using distributivity of \cdot over +
6. Delete possible copies of summands (idempotency)

From a DNF to the BF
Also (disjunctive) normal forms can be used to quickly derive the truth table of a BF :

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the variables in the DNF
Whereas every minterm univoquely identifies one single row of the truth table, every summand in a DNF (that is a product of literals) identifies a set of rows in the following way:

- If x_{j} appears negated, x_{j} must hold 0 ;
- If x_{j} appears simple, x_{j} must hold 1 ;
- If x_{j} doesn't appear, it can hold both 0 and 1 .

Hence, we build the table by putting 1 in all rows that are identified by at least one summand of the DNF.

POS Forms (through examples)

Sapienza

0	0	0
0	1	1
1	0	1

$\begin{array}{llll}1 & 0 & 1\end{array}$
$\begin{array}{ll}11 & 1\end{array}$
$f=\bar{x} y+x \bar{y}+x y$. But we can also describe f through its 0 s
f holds 0 iff $x=0$ and $y=0$
i.e., $\bar{f}=1$ iff $\bar{x}=\bar{y}=1$

The first summand holds 1 with the assignments 001 and 101
The second summand holds 1 only for 111 (it is a minterm!)
Hence,

Conjunctive Canonical Form (or POS)

SAPIENZA

Let's have n variables $\left\{x_{1}, \ldots, x_{n}\right\}$:
A maxterm is a sum of n literals $l_{1}+\ldots+l_{n}$ such that

$$
l_{i} \in\left\{x_{i}, \bar{x}_{i}\right\} \text {, for every } i \in\{1, \ldots, n\}
$$

A conjunctive canonical form (or POS canonical form) is a product (or a conjunction, hence the name) of pairwise distinct maxterms.
For every maxterm M, there esists one unique n-tupla of bits that make
it 0 . it 0 .
In general, the n-tupla is obtained by assigning 0 to the variables that appear simple in M and 1 to those that appear negated.
There is a bijective correspondence between the 2^{n} maxterms and $\{0,1\}^{n}$:

$$
M \leftrightarrow b_{1} \ldots b_{n} \quad \text { iff } \quad M\left(b_{1} \ldots b_{n}\right)=0
$$

If M is associated to $b_{1} \ldots b_{\text {, }}$ and $b_{1} \ldots b_{n}$, seen as a natural number If M is associated to $b_{1} \ldots b_{n}$, and $b_{1} \ldots b_{n}$, seen as a natural number
codified in binary with n bitts, corresponds to the decimal k, then M will be called M_{k}.

Ex.: $\bar{x}_{3}+x_{2}+\bar{x}_{1}$ holds 0 iff $x_{3}=x_{1}=1$ and $x_{2}=0$
It is in bijection with 101 and so we shall call it M_{5}

From CCF to the BF and vice versa

- Given a BF, the associated CCF is obtained by taking all the rows that hold 0 and by multiplying all the corresponding maxterms.
- Given a CCF, the associated BF is obtained by putting 0 in all rows whose binary strings correspond to the maxterms of the CCF and 0 elsewhere

Ex.:	
$x_{3} x_{2} x_{1}$	f
000	0
001	1
010	0
011	1
100	0
101	1
110	1
111	1

CCF: $M_{0} \cdot M_{2} \cdot M_{4}$
,

110

From a CNF to the BF

Also conjunctive normal forms can be used to quickly derive the truth table of a BF; the procedure id dual w.r.t. DNFs:
Every factor (sum of literals) of the CNF is associated to a set of rows in the following way:

- If x_{j} appears negated, x_{j} must hold 1 ;
- If x_{j} appears simple, x_{j} must hold 0 ;
- If x_{j} doesn't appear, x_{j} can hold 0 and 1 .

Hence, we now write 0 in all rows identified in this way.
Ex.:

BFs and BEs

SAPIENZA

Theorem: for every BE , there exists a unique BF associated.
Theorem: for every BF, there exists a unique BE in DCF and one unique BE in CCF associated.

Remark: unique up-to commutativity and associativity of + and $\cdot!!$
By contrast, DNFs and CNFs are not unique.
Ex.:
Its DCF is $m_{2}+m_{3}+m_{7}$, i.e.

$x_{3} x_{2} x_{1}$
000
:---
00

0	0	1	0
0	1	0	1

0	1	0	1
0	1	1	1
1	0		1

$\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0\end{array}$

1	0		1
1	0	1	0
1	1	0	0
1	1	1	1

| 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 |

$x_{2} \bar{x}_{1}+x_{3} x_{2} x_{1}+x_{3} x_{2} x_{1}$
$=\bar{x}_{3} x_{2}\left(\bar{x}_{1}+x_{1}\right)+x_{3} x_{2} x_{1}=\bar{x}_{3} x_{2}+x_{3} x_{2} x_{1}$
$=\bar{x}_{3} x_{2} \bar{x}_{1}+\left(\bar{x}_{3}+x_{3}\right) x_{2} x_{1}=\bar{x}_{3} x_{2} \bar{x}_{1}+x_{2} x_{1}$

