

From a BF to the (disjunctive) canonical form through examples

$\begin{array}{c ccc} x & y & & f \\ \hline 0 & 0 & & 0 \\ 0 & 1 & & 0 \\ 1 & 0 & & 0 \\ 1 & 1 & & 1 \\ \end{array}$	f holds 1 if and only if $x = 1$ and $y = 1$ i.e., if and only if $x \cdot y = 1$ Hence, $f = x \cdot y$
$\begin{array}{c cccc} x & y & & f & \\ \hline 0 & 0 & & 0 & \\ 0 & 1 & & 0 & \\ 1 & 0 & & 1 & \\ 1 & 1 & & 0 & \\ \end{array}$	f holds 1 if and only if $x = 1$ and $y = 0$ (that is, , $\overline{y} = 1$) i.e., if and only if $x \cdot \overline{y} = 1$ Hence, $f = x \cdot \overline{y}$
$\begin{array}{c cccc} x & y & & f & \\ \hline 0 & 0 & & 0 & \\ 0 & 1 & & 0 & \\ 1 & 0 & & 1 & \\ 1 & 1 & & & 1 & \\ \end{array}$	f holds 1 if and only if $x = 1 & y = 1$ or $x = 1 & y = 0$ i.e., if and only if $x \cdot y + x \cdot \overline{y} = 1$ Hence, $f = x \cdot y + x \cdot \overline{y}$

BFs vs BEs

Theorem: for every BE there exists a unique associated BF *Proof:*

- Through perfect induction, we build the truth table
- this describes the associated BF

Q.E.D.

The converse does NOT hold: for every BF there exist infinitely many equivalent BEs

Example:

 $\begin{array}{c|cc} x & f \\ \hline 0 & 1 \\ 1 & 0 \end{array}$

Bes that have this truth table are (among the others):

$$\bar{x}, \bar{x} + 0, \bar{x} + 0 + 0, \bar{x} + 0 + 0 + 0, \dots$$

We shall now define *canonical forms* such that every BF has one unique canonical BE associated.

Disjunctive Canonical Form (or SOP)

Let's assume to have n variables $\{x_1, \dots, x_n\}$:

Every occurence of a variable, either in simple form x_i or negated \overline{x}_i , is called *literal*.

A *minterm* is a product of *n* literals $l_1 \cdot ... \cdot l_n$ such that $l_i \in \{x_i, \overline{x_i}\}$, for every $i \in \{1,...,n\}$

A Disjunctive Canonical Form (or SOP canonical form), is a sum (or disjunction, hence the name) of pairwise distinct minterms.

Example (n=3):

$$x_1x_2x_3 + \overline{x}_1x_2x_3 + x_1\overline{x}_2\overline{x}_3 + \overline{x}_1\overline{x}_2\overline{x}_3$$

DCFs and BFs

Let f be a function in the n variables $\{x_1, ..., x_n\}$:

A minterm *m* is an *implicant* of *f* if, for every $b_1...b_n \in \{0,1\}^n$, $m(b_1...b_n) = 1 \implies f(b_1...b_n) = 1$

The DCF associated to f is the DCF that contains all and only the minterms that are implicants of f.

Ex.:

$x_3 x_2 x_1$	f	
0 0 0	0	$\overline{x}_3 \overline{x}_2 \overline{x}_1$ isn't an implicant of f: $m(000)=1$ but $f(000)=0$
0 0 1	0	5 2 1
0 1 0	1	$\overline{x}_1 x_2 \overline{x}_1$ is an implicant: the only assignment
0 1 1	1	that makes $m=1$ is 010 and $f(010)=1$
1 0 0	0	
1 0 1	0	The implicants of f are: $\bar{x}_3 x_2 \bar{x}_1, \bar{x}_3 x_2 x_1, x_3 x_2 x_1$
1 1 0	0	1 0 321 321
1 1 1	1	Hence, the DCF of f is $\overline{x}_3x_2\overline{x}_1 + \overline{x}_3x_2x_1 + x_3x_2x_1$

From DCF to the BF and vice versa

- Given a BF, the associated DCF can be obtained by taking all the rows where the BF holds 1 and by considering all the minterms associated to such rows.
- Given a DCF, the associated BF can be obtained by putting 1 in all rows whose binary strings correspond to the minterms in the DCF and 0 elsewhere.

$\mathbf{E}\mathbf{x}$.

EX		
$x_3 x_2 x_1$	f	
000	0	
001	1	
010	0	
0 1 1	1	
100	0	
101	1	
110	1	
111	1	

DCF: $m_1 + m_3 + m_5 + m_6 + m_7$

Identifying minterms

OBS: for every minterm m, there exists a unique n-tupla of bits that make it 1.

Ex.:
$$\overline{x}_3 x_2 \overline{x}_1$$
 holds 1 iff $x_3 = x_1 = 0$ and $x_2 = 1$

In general, the *n*-tupla can be obtained by giving 1 to the variables that occur simple in *m* and 0 to those that occur negated.

Hence, we can create a bijection between the 2^n minterms with $\{0,1\}^n$:

$$m \leftrightarrow b_1 \dots b_n$$
 iff $m(b_1 \dots b_n) = 1$

If m corresponds to $b_1...b_n$ in this bijection and $b_1...b_n$, seen as a natural number codified in binary with n bits, corresponds to the decimal number k, then m will be called m_k .

Ex.: $\overline{x}_3 x_2 \overline{x}_1$ corresponds to 010; having $010_2 = 2_{10}$, we shall call m_2 such a minterm.

From a BE to its DCF

Let E be any BE.

- Push all its negations directly on its variables (De Morgan) and delete double negations (involution)
- 2. Turn the resulting expression in SOP form, by using distributivity of · over +
- Delete possible copies of the summands (idempotency) and the products that contain a literal and its negation (complement and annihilator)

We now have a *form disjunctive normal form* (or *SOP normal form*), i.e., a SOP whose summands are not minterms, in general.

- 4. Multiply every summand that does not contain x_i with $(x_i + \overline{x_i})$ (neutral and complement)
- 5. Turn the resulting expression in SOP form, by using distributivity of over +
- 6. Delete possible copies of summands (idempotency)

Example

$$E = (x_1 + x_2(\overline{x_3 + \overline{x_1}x_4}))x_3 + \overline{x_2}x_4$$

1)
$$E = (x_1 + x_2(\overline{x}_3 \cdot \overline{x_1} x_4))x_3 + (\overline{x}_2 + \overline{x}_4) = (x_1 + x_2 \overline{x}_3(\overline{x}_1 + \overline{x}_4))x_3 + (x_2 + \overline{x}_4)$$
$$= (x_1 + x_3 \overline{x}_3(x_1 + \overline{x}_4))x_3 + x_2 + \overline{x}_4$$

2) =
$$x_1x_3 + x_2\overline{x}_3(x_1 + \overline{x}_4)x_3 + x_2 + \overline{x}_4 = x_1x_3 + x_1x_2\overline{x}_3x_3 + x_2\overline{x}_3x_3\overline{x}_4 + x_2 + \overline{x}_4$$

3) =
$$x_1x_3 + x_2 + \overline{x}_4$$
 \rightarrow SOP Normal Form

4) =
$$x_1x_3(x_2 + \overline{x}_2)(x_4 + \overline{x}_4) + x_2(x_1 + \overline{x}_1)(x_3 + \overline{x}_3)(x_4 + \overline{x}_4) + \overline{x}_4(x_1 + \overline{x}_1)(x_2 + \overline{x}_2)(x_3 + \overline{x}_3)$$

$$5) = m_{15} + m_{11} + m_{14} + m_{10} + m_{15} + m_{14} + m_{13} + m_{12} + m_{7} + m_{6} + m_{5} + m_{4} + m_{14} + m_{12} + m_{10} + m_{8} + m_{6} + m_{4} + m_{2} + m_{0}$$

6) =
$$m_{15} + m_{14} + m_{13} + m_{12} + m_{11} + m_{10} + m_8 + m_7 + m_6 + m_5 + m_4 + m_2 + m_0$$

$$\rightarrow$$
 SOP Canonical Form

Example

$$E = \overline{x}_2 x_1 + x_3 x_2 x_1$$

The first summand holds 1 with the assignments 001 and 101 The second summand holds 1 only for 111 (it is a minterm!) Hence,

	$x_3 x_2 x_1$	f
_	0 0 0	0
$\overline{x}_2 x_1$	0 0 1	1
	0 1 0	0
	0 1 1	0
	1 0 0	0
•	1 0 1	1
	1 1 0	0
$x_3x_2x_1 \longrightarrow$	1 1 1	1

From a DNF to the BF

Also (disjunctive) normal forms can be used to quickly derive the truth table of a BF:

Let $\{x_1,...,x_n\}$ be the variables in the DNF

Whereas every minterm univoquely identifies one single row of the truth table, every summand in a DNF (that is a product of literals) identifies a set of rows in the following way:

• If x_i appears negated, x_i must hold 0;

• If x_i appears simple, x_i must hold 1;

• If x_i doesn't appear, it can hold both 0 and 1.

Hence, we build the table by putting 1 in all rows that are identified by at least one summand of the DNF.

POS Forms (through examples)

$\begin{array}{c cccc} x & y & f \\ \hline 0 & 0 & 0 \end{array}$	$f = \overline{xy} + x\overline{y} + xy$. But we can also describe f through its 0s
0 0 0	
0 1 1	f holds 0 iff $x = 0$ and $y = 0$
1 0 1	i.e., $\overline{f} = 1$ iff $\overline{x} = \overline{y} = 1$
11 1	Hence, $\overline{f} = \overline{x} \cdot \overline{y}$, and so $f = \overline{\overline{x} \cdot \overline{y}} = x + y$
$x y \mid f$	
0 0 1	
0 0 1 0 1 0 1 0 1 1 0 1	f holds 0 iff $x = 0$ and $y = 1$
1 0 1	i.e., $\overline{f} = \overline{x} \cdot y$
1 1 1	and so $f = x + \overline{y}$
$xy \mid f$	
$\frac{1}{0}$	
0 1 0	f holds 0 iff $x = y = 0$ or $x = 0 & y = 1$
$ \begin{array}{c cccc} 0 & 1 & & 0 \\ 1 & 0 & & 1 \end{array} $	i.e., $\overline{f} = \overline{x} \cdot \overline{y} + \overline{x} \cdot y$
11 1	and so $f = \overline{x} \cdot \overline{y} + \overline{x} \cdot y = (\overline{x} \cdot \overline{y}) \cdot (\overline{x} \cdot y) = (x + y) \cdot (x + \overline{y})$
	12

Conjunctive Canonical Form (or POS)

Let's have *n* variables $\{x_1, ..., x_n\}$:

A maxterm is a sum of n literals $l_1 + ... + l_n$ such that $l_i \in \{x_i, \overline{x}_i\}$ for every $i \in \{1,...,n\}$

A *conjunctive canonical form* (or POS canonical form) is a product (or a conjunction, hence the name) of pairwise distinct maxterms.

For every maxterm M, there exists one unique n-tupla of bits that make it 0

In general, the n-tupla is obtained by assigning 0 to the variables that appear simple in M and 1 to those that appear negated.

There is a bijective correspondence between the 2^n maxterms and $\{0,1\}^n$:

$$M \leftrightarrow b_1 \dots b_n$$
 iff $M(b_1 \dots b_n) = 0$

If M is associated to $b_1 ldots b_n$ and $b_1 ldots b_n$, seen as a natural number codified in binary with n bits, corresponds to the decimal k, then M will be called M_k .

Ex.: $\overline{x}_3 + x_2 + \overline{x}_1$ holds 0 iff $x_3 = x_1 = 1$ and $x_2 = 0$ It is in bijection with 101 and so we shall call it M_5

From a BE to its CCF

Let E be any BE.

- 1. Push all negations directly on its variables (De Morgan) and delete double negations (involution)
- 2. Turn the expression in POS form, by using distributivity of +
- 3. Delete possible copies of factors (idempotency) and all summands that contain a literal and its negation (complement and annihilator)

We now have a *conjunctive normal form* (or *POS*), i.e., a POS whose factors are not maxterms, in general.

- 4. Sum $x_i \cdot \overline{x_i}$ to every factor that doesn't contain x_i (neutral and complement)
- 5. Turn the resulting expression in POS form, by using distributivity of + over
- 6. Delete possible copies of factors (idempotency)

From CCF to the BF and vice versa

- Given a BF, the associated CCF is obtained by taking all the rows that hold 0 and by multiplying all the corresponding maxterms.
- Given a CCF, the associated BF is obtained by putting 0 in all rows whose binary strings correspond to the maxterms of the CCF and 0 elsewhere.

Ex.:

f
0
1
0
1
0
1
1
1

CCF: $M_0 \cdot M_2 \cdot M_4$

Example

$$E = \overline{x + y\overline{z}} + \overline{y}z$$

1)
$$E = \overline{x}(\overline{y} + z) + \overline{y}z$$

2) =
$$(\overline{x}(\overline{y}+z)+\overline{y})(\overline{x}(\overline{y}+z)+z)=(\overline{x}+\overline{y})(\overline{y}+z+\overline{y})(\overline{x}+z)(\overline{y}+z+z)$$

$$= (\overline{x} + \overline{y})(\overline{y} + z)(\overline{x} + z)$$

→ POS Normal Form

4) =
$$(\overline{x} + \overline{y} + z\overline{z})(\overline{y} + z + x\overline{x})(\overline{x} + z + y\overline{y})$$

$$= M_6 \cdot M_7 \cdot M_2 \cdot M_6 \cdot M_4 \cdot M_6$$

$$= M_7 \cdot M_6 \cdot M_4 \cdot M_2$$

POS Canonical Form

From a CNF to the BF

Also *conjunctive normal forms* can be used to quickly derive the truth table of a BF; the procedure id dual w.r.t. DNFs:

Every factor (sum of literals) of the CNF is associated to a set of rows in the following way:

- If x_i appears negated, x_i must hold 1;
- If x_i appears simple, x_i must hold 0;
- If x_i doesn't appear, x_i can hold 0 and 1.

Hence, we now write 0 in all rows identified in this way.

Ex.:

$$E = (\overline{x}_2 + x_1)(x_3 + x_2 + x_1)$$

$x_3 x_2 x_1$			f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

BFs and BEs

Theorem: for every BE, there exists a unique BF associated.

Theorem: for every BF, there exists a unique BE in DCF and one unique BE in CCF associated.

Remark: unique up-to commutativity and associativity of + and \cdot !!

By contrast, DNFs and CNFs are not unique.