

Dual and Complementary Expressions

Dual Expression: obtained by swapping 0 and 1, + and \cdot

Complementary Expression: like the dual one, but also complement all variables (it is obtained through De Morgan and involution)

Example: $E = (x+0) \cdot y + 1 \cdot z$

Dual:

$$(x\cdot 1+y)\cdot (0+z)$$

Complementary:

$$(x+0) \cdot y + 1 \cdot z = (x+0) \cdot y \cdot 1 \cdot z = (x+0+\overline{y}) \cdot (\overline{1}+\overline{z})$$
$$= (\overline{x} \cdot \overline{0} + \overline{y}) \cdot (0+\overline{z}) = (\overline{x} \cdot 1 + \overline{y}) \cdot (0+\overline{z})$$

Boolean Expressions

A *boolean expression* is a sequence composed of constants, variables, parenthesis and operators, inductively defined as follows:

Let V be a numerable set of variables; then

- $0, 1 \in BE;$
- if $x \in V$, then $x \in BE$;
- if $E \in BE$, then \overline{E} , $(E) \in BE$;
- if $E_1, E_2 \in BE$, then $E_1 + E_2, E_1 \cdot E_2 \in BE$.

Equivalence of Boolean Expressions

Def.: E_1 and E_2 are *equivalent* if they have the same value under the same assignment of boolean values to their variables.

Check: 1. through formal proofs

- 2. through perfect induction
 - Consider all possible assignments to variables
 - Incrementally compute the value of the expression for every assignment

Example: x + xy = x + xz

• x + xy = x(1 + y) = x = x(1 + z) = x + xz

•	x + xy - x	$(1 \pm y)$	- x -	- x (1	$(\pm 2) - x$	τxz		
•	x y z	xy		+xy	xz	1	(+)\r	
	0 0 0	0		0	0		0	
	0 0 1	0		0	0		0	
	0 1 0	0		0	0		0	
	0 1 1	0		0	0		0	
	1 0 0	0		1	0		1	
	1 0 1	0	١ ١	1	1		1	
	1 1 0	1	١ ١	1	0	l \	1	
	1 1 1	1		\1/	1	١ ١	(1/	

Boolean Functions

Hence, a BE identifies a *boolean function*, i.e. a law that, according to the variable values, univoquely returns a boolean value:

$$f: \{0,1\}^n \rightarrow \{0,1\}$$
numero di variabili

Remark: two BEs are equivalent if they identify the same BF

Truth Tables

A *boolean function* can be represented through a **truth table** that fully describes the association between the elements of the domain and those of the codoman.

Given *n* variables, a truth table is made up of 2 parts:

- In the leftmost part, there are all the 2ⁿ possible combinations of boolean values assignable to variables
- In the rightmost part, there is a column of 0s and 1s such that the value in the row *i* is the value of the *i*-th *n*-tupla of boolean values assignable to the variables.

Example (function associated to the BE $x \cdot y$):

<i>x y</i>	f
0 0	0
0 1	0
1 0	0
1 1	1

Constant and Unary BFs

$$f: \{0,1\}^n \to \{0,1\}$$

If n = 0, f is a constant, that can be either 0 or 1

If n = 1, we have four possible BFs:

Binary BFs

If n = 2, we have 16 possible functions:

Functions to $\{0,1\}^m$

In general, a BF can return an *m*-tuple of bits:

$$f: \{0,1\}^n \to \{0,1\}^m$$

Ex.:

x y	f
0 0	000
0 1	100
1 0	0 1 1
1 1	100

From now on, we shall consider such a function as an m-tupla of functions with codomain $\{0,1\}$.

Ex.:

x y	f_1	f_2	f_3
0 0	0	0	0
0 1	1	0	0
1 0	0	1	1
1 1	1	0	0

Basic logic gates

	AND	I.		OR		Ne	TC
x	y	z	x	y	z	x	y
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Other logic gates

1	VAN	D	
x	y	z	
0	0	1	
0	1	1	· —
1	0	1	
1	1	0	-

	NOR		
x	y	z	
0	0	1	
0	1	0	- b-
1	0	0	-
1	1	0	

	XOR			
x	y	z		
0	0	0		~
0	1	1))
1	0	1		
1	1	0	-	

$$OBS$$
: $x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$

$$OBS : \overline{x \oplus y} = \overline{x} \cdot \overline{y} + x \cdot y$$

Multiple inputs Gates

 $x_1 \cdot \ldots \cdot x_n = (\ldots(x_1 \cdot x_2) \cdot \ldots \cdot x_n)$ (Associativity)

$$x_1$$
 x_n x_n x_n x_n x_n x_n x_n x_n

The same happes for OR, that implements an associative operator (+).

What happens for NAND, NOR, XOR and XNOR?

- for XOR and XNOR, the situation is similar (they're associative)
- for NAND and NOR, the situation changes: since they're NOT associative, writing x NAND y NAND z is meaningless. Hence, with

we denote a specific 3 input gate, not realizable with two 2-inputs NAND gates one after the other.

Multiple inputs Gates (cont.)

XOR is associative:

$$(x \oplus y) \oplus z = (\overline{x \oplus y}) \cdot z + (x \oplus y) \cdot \overline{z} = (x \cdot y + \overline{x} \cdot \overline{y}) \cdot z + (x \cdot \overline{y} + \overline{x} \cdot y) \cdot \overline{z}$$

$$=x\cdot y\cdot z+\overline{x}\cdot \overline{y}\cdot z+x\cdot \overline{y}\cdot \overline{z}+\overline{x}\cdot y\cdot \overline{z}=$$

$$= \overline{x} \cdot (y \cdot \overline{z} + \overline{y} \cdot z) + x \cdot (y \cdot z + \overline{y} \cdot \overline{z}) = \overline{x} \cdot (y \oplus z) + x \cdot (\overline{y \oplus z}) = x \oplus (y \oplus z)$$

Similarly, you can prove that XNOR is associative.

By contrast, NOR and NAND are not!

Ex. (NAND):
$$\overline{x \cdot (\overline{y \cdot z})} = \overline{x} + y \cdot z$$

$$\overline{(x \cdot y) \cdot z} = x \cdot y + \overline{z}$$

These two BEs are not equivalent:

consider the assignment x = y = 0 and z = 1, that makes 1 the first BE and 0 the second one.

12

Universality of NAND gates

By idempotency, $x = x \cdot x \Rightarrow \overline{x} = \overline{x \cdot x} = NAND(x, x)$

By involution, $x \cdot y = \overline{x \cdot y} = \overline{NAND(x, y)} = NAND(NAND(x, y), NAND(x, y))$

By involution and De Morgan,

$$x + y = \overline{x + y} = \overline{x} \cdot \overline{y} = NAND(\overline{x}, \overline{y}) = NAND(NAND(x, x), NAND(y, y))$$

Universality of NOR gates

By duality, we have that

$$\overline{r} = \overline{r + r}$$

$$x + v = x + v$$

$$x \cdot v = \overline{\overline{x} + \overline{v}}$$

and so

All-NAND circuits (example)

Let us implement a XOR gate by only using NAND gates:

$$x \oplus y = x \cdot \overline{y} + \overline{x} \cdot y = \overline{(\overline{x} \cdot \overline{y}) \cdot (\overline{x} \cdot y)} = \overline{(\overline{x} \cdot \overline{y}) \cdot (\overline{x} \cdot \overline{x} \cdot y)}$$

From a POS expression to an ALL-NOR one

Dually, given a POS (product of sums of variables and negated variables), it is easy to build an equivalent ALL-NOR BE (again, having multiple inputs NOR gates):

- 1. Apply De Morgan to the conjunction (outmost operator)
- This turns the AND into a negated OR, and

Remark: here we're using a 3-inputs NOR!!

- · the disjunctions among variables into NORs
- 2. Finally, we have to replace the negated variables with self NORs

ES.:

$$(x+\overline{y}+z)\cdot(\overline{x}+y) = \overline{(x+\overline{y}+z)+(\overline{x}+y)} = \overline{(x+\overline{y}+z)+(\overline{x}+y)}$$

From a SOP expression to an ALL-NAND one

Given a SOP BE (a Sum Of Products of variables and negated variables), it is very easy to built an equivalent ALL-NAND BE (by assuming the use of multiple inputs NAND and NOR gates):

- 1. Apply De Morgan to the disjunction (outmost operator)
 - · This turns the outmost OR into a negated AND, and
 - all the conjunctions among the variables into many NANDs
- 2. Finally, we have to replace the negated variables with self NANDs

Ex. (previous slide):

$$x \cdot \overline{y} + \overline{x} \cdot y = (\overline{x} \cdot \overline{y}) \cdot (\overline{x} \cdot y) = (\overline{x} \cdot y) \cdot (\overline{x} \cdot x \cdot y)$$