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Boolean Expressions 

A boolean expression is a sequence composed of constants, 
variables, parenthesis and operators, inductively defined as 
follows:

Let  V  be a numerable set of variables; then
•  0, 1 ∈ BE;
•  if  x ∈ V, then x ∈ BE;
•  if E ∈ BE, then  E , (E) ∈ BE;
•  if E1, E2 ∈ BE, then  E1+E2 , E1·E2 ∈ BE.

Dual and Complementary Expressions 

Dual Expression: obtained by swapping 0 and 1 ,  +  and  ⋅ 
 
Complementary Expression: like the dual one, but also complement 
all variables (it is obtained through De Morgan and involution) 
 
 
Example:  E = (x+0) ⋅ y  +  1 ⋅ z 
 
        Dual:    

  (x ⋅ 1 + y) ⋅ (0 + z) 
 
        Complementary:  
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( 0) 1 ( 0) 1 ( 0 ) (1 )x y z x y z x y z+ ⋅ + ⋅ = + ⋅ ⋅ ⋅ = + + ⋅ +

( 0 ) (0 ) ( 1 ) (0 )x y z x y z= ⋅ + ⋅ + = ⋅ + ⋅ +

Equivalence of Boolean Expressions 

Def.: E1 and E2 are equivalent if they have the same value under the same 
assignment of boolean values to their variables. 
 
Check:     1. through formal proofs 

    2. through perfect induction 
-   Consider all possible assignments to variables 
-  Incrementally compute the value of the expression for 

every assignment 
Example:  x + xy  =  x + xz 

 •    x + xy  = x (1 + y) = x = x (1 + z) = x + xz 
 • 
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x   y  z xy x+xy xz x+xz
0  0  0 0    0 0    0
0  0  1 0    0 0    0
0  1  0 0    0 0    0
0  1  1 0    0 0    0
1  0  0 0    1 0    1
1  0  1 0    1 1    1
1  1  0 1    1 0    1
1  1  1 1    1 1    1
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Boolean Functions 
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Hence,  a BE identifies a boolean function, i.e. a law that, according 
to the variable values, univoquely returns a boolean value:

f : {0,1}n →{0,1}

numero di variabili

Graphically:

Remark: two BEs are equivalent if they identify the same BF

{0,1}n      00…0
     0…01
     0…10
       …
     11…1

0

1…

f

Truth Tables 
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A boolean function can be represented through a truth table that 
fully describes the association between the elements of the domain 
and those of the codoman. 

Given n variables, a truth table is made up of 2 parts:
•  In the leftmost part, there are all the 2n possible combinations of boolean 

values assignable to variables 
•  In the rightmost part, there is a column of 0s and 1s such that the value in 

the row i is the value of the i-th n-tupla of boolean values assignable to 
the variables.

Example (function associated to the BE  x⋅y):
x  y  f
0  0  0
0  1  0
1  0  0
1  1  1

Constant and Unary BFs 

    f : {0,1}n →{0,1} 
 
If n = 0,  f  is a constant, that can be either 0 or 1 
 
If n = 1, we have four possible BFs: 
 

   x  f0  f1  f2  f3 
   0  0  0  1  1 
   1  0  1  0  1 

 
           constant0   identity  complement  constant1 

              (NOT) 
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Binary BFs 

If n = 2, we have 16 possible functions: 
 
      x  y           f0    f1    f2    f3    f4    f5    f6    f7    f8    f9    f10    f11    f12    f13    f14    f15 

 
 0  0           0    0     0    0     0    0    0     0    1    1     1      1      1      1     1      1 
 0  1            0    0     0    0     1    1    1     1    0    0     0      0      1      1     1      1   
 1  0            0    0     1    1     0    0    1     1    0    0     1      1      0      0     1      1 
 1  1            0    1     0    1     0    1    0     1    0    1     0      1      0      1     0      1 

 
    constant0     x                 y               + (OR)        XNOR     x    NAND 

 
     • (AND)       XOR       NOR             y             constant1 
                ⊕ 
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Functions to {0,1}m 
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In general, a BF can return an m-tuple of bits:

f : {0,1}n →{0,1}m

Ex.:
x  y    f
0  0 0 0 0
0  1 1 0 0
1  0 0 1 1
1  1 1 0 0

From now on, we shall consider such a function as an m-tupla of 
functions with codomain {0,1}.

Ex.:
x  y f1  f2   f3
0  0 0   0   0
0  1 1   0   0
1  0 0   1   1
1  1 1   0   0

Basic logic gates 
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Other logic gates 
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OBS. : x⊕ y = x ⋅ y + x ⋅ y OBS. : x⊕ y = x ⋅ y + x ⋅ y

Multiple inputs Gates 
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x1 ⋅ … ⋅ xn = (…(x1 ⋅ x2) ⋅ … ⋅ xn) (Associativity)
x1 x1
…     = x2
xn …

xn

n-1
The same happes for OR, that implements an associative operator (+).
What happens for NAND, NOR, XOR and XNOR?

•  for XOR and XNOR, the situation is similar (they’re associative)
•  for NAND and NOR, the situation changes: since they’re NOT associative,   
  writing   x NAND y NAND z  is meaningless. Hence, with

x
y
z

  we denote a specific 3 input gate, not realizable with two 2-inputs NAND 
  gates one after the other.
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Multiple inputs Gates (cont.) 

XOR is associative: 
 
 
 
 
Similarly, you can prove that XNOR is associative. 
 
By contrast, NOR and NAND are not! 

 Ex. (NAND): 
 

 These two BEs are not equivalent:  
 consider the assignment  x = y = 0 and z = 1, that makes 1 the 
first BE and 0 the second one. 
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( ) ( ) ( ) ( ) ( )x y z x y z x y z x y x y z x y x y z⊕ ⊕ = ⊕ ⋅ + ⊕ ⋅ = ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅

x y z x y z x y z x y z= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =

( ) ( ) ( ) ( ) ( )x y z y z x y z y z x y z x y z x y z= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ = ⋅ ⊕ + ⋅ ⊕ = ⊕ ⊕

( )x y z x y z⋅ ⋅ = + ⋅ ( )x y z x y z⋅ ⋅ = ⋅ +

Universality of NAND gates 
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By idempotency, 

By involution, 

By involution and De Morgan, 

( , )x x x x x x NAND x x= ⋅ ⇒ = ⋅ =

( , ) ( ( , ), ( , ))x y x y NAND x y NAND NAND x y NAND x y⋅ = ⋅ = =

( , ) ( ( , ), ( , ))x y x y x y NAND x y NAND NAND x x NAND y y+ = + = ⋅ = =

Universality of NOR gates 

By duality, we have that 
 
 
 
and so 
                        
 
 

      = 
             = 

 
 
 
                   = 
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x x x= + x y x y+ = + x y x y⋅ = +

All-NAND circuits (example) 
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( ) ( ) ( ) ( )x y x y x y x y x y x y y x x y⊕ = ⋅ + ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

x

y

Let us implement a XOR gate by only using NAND gates: 
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Practical Usage: integrated circuits 
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Y A AB= +

A B

A B⋅A

Y
( ) ( )A A B A A A A B= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅

From a SOP expression to an ALL-NAND one 
Given a SOP BE (a Sum Of Products of variables and negated variables), it is 

very easy to built an equivalent ALL-NAND BE (by assuming the use of 
multiple inputs NAND and NOR gates): 

 
1.  Apply De Morgan to the disjunction (outmost operator) 

•   This turns the outmost OR into a negated AND, and 
•   all the conjunctions among the variables into many NANDs 

2.  Finally, we have to replace the negated variables with self NANDs 

Ex. (previous slide): 
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x ⋅ y + x ⋅ y = (x ⋅ y) ⋅ (x ⋅ y) = (x ⋅ y ⋅ y) ⋅ (x ⋅ x ⋅ y)

From a POS expression to an ALL-NOR one 
Dually, given a POS (product of sums of variables and negated variables), it is 

easy to build an equivalent ALL-NOR BE (again, having multiple inputs 
NOR gates): 

 
1.  Apply De Morgan to the conjunction (outmost operator) 

•   This turns the AND into a negated OR, and 
•   the disjunctions among variables into NORs 

2.  Finally, we have to replace the negated variables with self NORs 

ES.: 
 
 
 
 
 
Remark: here we’re using a 3-inputs NOR!! 
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(x + y + z) ⋅ (x + y) = (x + y + z)+ (x + y) = (x + y + y + z)+ (x + x + y)


