SAPIENZA

Boolean Expressions and Operators
Prof. Daniele Gorla

Boolean Expressions

SAPIENZA

A boolean expression is a sequence composed of constants, variables, parenthesis and operators, inductively defined as follows:

Let V be a numerable set of variables; then

- $0,1 \in \mathrm{BE}$;
- if $x \in V$, then $x \in \mathrm{BE}$
- if $\mathrm{E} \in \mathrm{BE}$, then $\mathrm{E},(\mathrm{E}) \in \mathrm{BE}$;
- if $\mathrm{E}_{1}, \mathrm{E}_{2} \in \mathrm{BE}$, then $\mathrm{E}_{1}+\mathrm{E}_{2}, \mathrm{E}_{1} \cdot \mathrm{E}_{2} \in \mathrm{BE}$.

Dual Expression: obtained by swapping 0 and $1,+$ and \cdot
Equivalence of Boolean Expressions
Def.: E_{1} and E_{2} are equivalent if they have the same value under the same Def.: E_{1} and E_{2} are equivalent to their variables
assignment of boolean values

Complementary Expression: like the dual one, but also complement all variables (it is obtained through De Morgan and involution)

Example: $\quad \mathrm{E}=(x+0) \cdot y+1 \cdot z$
Dual

$$
(x \cdot 1+y) \cdot(0+z)
$$

Complementary:

$$
\overline{(x+0) \cdot y+1 \cdot z}=\overline{(x+0) \cdot y} \cdot \overline{1 \cdot z}=(\overline{x+0}+\bar{y}) \cdot(\overline{1}+\bar{z})
$$

Check: 1. through formal proofs
2. through perfect induction

Consider all possible assignments to variables

- Incrementally compute the value of the expression for every assignment
Example: $x+x y=x+x z$
- $x+x y=x(1+y)=x=x(1+z)=x+x z$
-

$$
=(\bar{x} \cdot \overline{0}+\bar{y}) \cdot(0+\bar{z})=(\bar{x} \cdot 1+\bar{y}) \cdot(0+\bar{z})
$$

Boolean Functions

SAPIENZA
Hence, a BE identifies a boolean function, i.e. a law that, according to the variable values, univoquely returns a boolean value:

$$
f:\{0,1\}_{\text {numero di variabili }}^{n} \rightarrow\{0,1\}
$$

Graphically:

Remark: two BEs are equivalent if they identify the same BF

A boolean function can be represented through a truth table that fully describes the association between the elements of the domain and those of the codoman.

Given n variables, a truth table is made up of 2 parts:

- In the leftmost part, there are all the 2^{n} possible combinations of boolean values assignable to variables
- In the rightmost part, there is a column of 0 s and 1 s such that the value in the row i is the value of the i-th n-tupla of boolean values assignable to the variables.

Example (function associated to the $\mathrm{BE} x \cdot y$):

$$
\begin{array}{ll|l}
x & y & f \\
\hline 0 & 0 & 0 \\
0 & 1 & \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}
$$

Binary BFs
(2) SAPIENZA

If $n=2$, we have 16 possible functions:

Functions to $\{0,1\}^{m}$ SAPIENZA

In general, a BF can return an m-tuple of bits:

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

Ex.:
$\left.\begin{array}{ll|c}x y & f \\ \hline 00 & 0 & 0\end{array}\right)$

From now on, we shall consider such a function as an m-tupla of functions with codomain $\{0,1\}$. Ex.:

$$
\begin{array}{ll|lll}
x & y & & f_{1} & f_{2} \\
f_{3} \\
\hline 0 & 0 & & 0 & 0 \\
0 & 0 \\
0 & 1 & & 1 & 0
\end{array} 0
$$

Multiple inputs Gates (cont.)

SAPIENZA

XOR is associative:
$(x \oplus y) \oplus z=(\overline{x \oplus y}) \cdot z+(x \oplus y) \cdot \bar{z}=(x \cdot y+\bar{x} \cdot \bar{y}) \cdot z+(x \cdot \bar{y}+\bar{x} \cdot y) \cdot \bar{z}$
$=x \cdot y \cdot z+\bar{x} \cdot \bar{y} \cdot z+x \cdot \bar{y} \cdot \bar{z}+\bar{x} \cdot y \cdot \bar{z}=$
$=\bar{x} \cdot(y \cdot \bar{z}+\bar{y} \cdot z)+x \cdot(y \cdot z+\bar{y} \cdot \bar{z})=\bar{x} \cdot(y \oplus z)+x \cdot(\overline{y \oplus z})=x \oplus(y \oplus z)$
Similarly, you can prove that XNOR is associative.
By contrast, NOR and NAND are not! Ex. (NAND): $\overline{x \cdot(\overline{y \cdot z})}=\bar{x}+y \cdot z$

$$
\overline{(\overline{x \cdot y}) \cdot z}=x \cdot y+\bar{z}
$$

These two BEs are not equivalent:
consider the assignment $x=y=0$ and $z=1$, that makes 1 the first BE and 0 the second one.

Universality of NAND gates

SAPIENZA

By idempotency, $x=x \cdot x \Rightarrow \bar{x}=\overline{x \cdot x}=N A N D(x, x)$

$$
-\infty 0=-\square
$$

By involution, $\quad x \cdot y=\overline{\overline{x \cdot y}}=\overline{\operatorname{NAND}(x, y)}=\operatorname{NAND}(\operatorname{NAND}(x, y), \operatorname{NAND}(x, y))$

By involution and De Morgan,
$x+y=\overline{\overline{x+y}}=\overline{\bar{x}} \cdot \bar{y}=\operatorname{NAND}(\bar{x}, \bar{y})=\operatorname{NAND}(\operatorname{NAND}(x, x), \operatorname{NAND}(y, y))$

All-NAND circuits (example)

(3) SAPIENZA

Let us implement a XOR gate by only using NAND gates:

$$
x \oplus y=x \cdot \bar{y}+\bar{x} \cdot y=\overline{\overline{(x \cdot \bar{y})} \cdot \overline{(\bar{x} \cdot y)}}=\overline{\overline{(x \cdot \overline{y \cdot y})} \cdot(\overline{\overline{x \cdot x} \cdot y})}
$$

From a SOP expression to an ALL-NAND one SApienza
Given a SOP BE (a Sum Of Products of variables and negated variables), it is very easy to built an equivalent ALL-NAND BE (by assuming the use of multiple inputs NAND and NOR gates):

1. Apply De Morgan to the disjunction (outmost operator)

- This turns the outmost OR into a negated AND, and
- all the conjunctions among the variables into many NANDs

2. Finally, we have to replace the negated variables with self NANDs

Ex. (previous slide):

$$
x \cdot \bar{y}+\bar{x} \cdot y=\overline{\overline{(x \cdot \bar{y}}) \cdot \overline{(\bar{x} \cdot y)}}=(\overline{(x \cdot \overline{y \cdot y})} \cdot(\overline{\overline{x \cdot x} \cdot y})
$$

From a POS expression to an ALL-NOR one

(8) SAPIENZA

Dually, given a POS (product of sums of variables and negated variables), it is easy to build an equivalent ALL-NOR BE (again, having multiple inputs NOR gates):

1. Apply De Morgan to the conjunction (outmost operator)

- This turns the AND into a negated OR, and
- the disjunctions among variables into NOR

2. Finally, we have to replace the negated variables with self NOR

ES.:
$(x+\bar{y}+z) \cdot(\bar{x}+y)=\overline{(x+\bar{y}+z)}+\overline{(\bar{x}+y)}=(\overline{x+\overline{y+y}+z})+(\overline{\overline{x+x}+y})$ $(x+y+z) \cdot(\bar{x}+y)=(x+y+z)+(\bar{x}+y)=$

