
17/09/20

1

Boolean Expressions and Operators
Prof. Daniele Gorla

2

Boolean Expressions

A boolean expression is a sequence composed of constants,
variables, parenthesis and operators, inductively defined as
follows:

Let V be a numerable set of variables; then
•  0, 1 ∈ BE;
•  if x ∈ V, then x ∈ BE;
•  if E ∈ BE, then E , (E) ∈ BE;
•  if E1, E2 ∈ BE, then E1+E2 , E1·E2 ∈ BE.

Dual and Complementary Expressions

Dual Expression: obtained by swapping 0 and 1 , + and ⋅

Complementary Expression: like the dual one, but also complement
all variables (it is obtained through De Morgan and involution)

Example: E = (x+0) ⋅ y + 1 ⋅ z

 Dual:

 (x ⋅ 1 + y) ⋅ (0 + z)

 Complementary:

3

(0) 1 (0) 1 (0) (1)x y z x y z x y z+ ⋅ + ⋅ = + ⋅ ⋅ ⋅ = + + ⋅ +

(0) (0) (1) (0)x y z x y z= ⋅ + ⋅ + = ⋅ + ⋅ +

Equivalence of Boolean Expressions

Def.: E1 and E2 are equivalent if they have the same value under the same
assignment of boolean values to their variables.

Check: 1. through formal proofs

 2. through perfect induction
- Consider all possible assignments to variables
-  Incrementally compute the value of the expression for

every assignment
Example: x + xy = x + xz

 • x + xy = x (1 + y) = x = x (1 + z) = x + xz
 •

4

x y z xy x+xy xz x+xz
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 0 1
1 0 1 0 1 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 1

17/09/20

2

Boolean Functions

5

Hence, a BE identifies a boolean function, i.e. a law that, according
to the variable values, univoquely returns a boolean value:

f : {0,1}n →{0,1}

numero di variabili

Graphically:

Remark: two BEs are equivalent if they identify the same BF

{0,1}n 00…0
 0…01
 0…10
 …
 11…1

0

1…

f

Truth Tables

6

A boolean function can be represented through a truth table that
fully describes the association between the elements of the domain
and those of the codoman.

Given n variables, a truth table is made up of 2 parts:
•  In the leftmost part, there are all the 2n possible combinations of boolean

values assignable to variables
•  In the rightmost part, there is a column of 0s and 1s such that the value in

the row i is the value of the i-th n-tupla of boolean values assignable to
the variables.

Example (function associated to the BE x⋅y):
x y f
0 0 0
0 1 0
1 0 0
1 1 1

Constant and Unary BFs

 f : {0,1}n →{0,1}

If n = 0, f is a constant, that can be either 0 or 1

If n = 1, we have four possible BFs:

 x f0 f1 f2 f3
 0 0 0 1 1
 1 0 1 0 1

 constant0 identity complement constant1

 (NOT)

7

Binary BFs

If n = 2, we have 16 possible functions:

 x y f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 constant0 x y + (OR) XNOR x NAND

 • (AND) XOR NOR y constant1
 ⊕

8

17/09/20

3

Functions to {0,1}m

9

In general, a BF can return an m-tuple of bits:

f : {0,1}n →{0,1}m

Ex.:
x y f
0 0 0 0 0
0 1 1 0 0
1 0 0 1 1
1 1 1 0 0

From now on, we shall consider such a function as an m-tupla of
functions with codomain {0,1}.

Ex.:
x y f1 f2 f3
0 0 0 0 0
0 1 1 0 0
1 0 0 1 1
1 1 1 0 0

Basic logic gates

10

Other logic gates

11

OBS. : x⊕ y = x ⋅ y + x ⋅ y OBS. : x⊕ y = x ⋅ y + x ⋅ y

Multiple inputs Gates

12

x1 ⋅ … ⋅ xn = (…(x1 ⋅ x2) ⋅ … ⋅ xn) (Associativity)
x1 x1
… = x2
xn …

xn

n-1
The same happes for OR, that implements an associative operator (+).
What happens for NAND, NOR, XOR and XNOR?

•  for XOR and XNOR, the situation is similar (they’re associative)
•  for NAND and NOR, the situation changes: since they’re NOT associative,
 writing x NAND y NAND z is meaningless. Hence, with

x
y
z

 we denote a specific 3 input gate, not realizable with two 2-inputs NAND
 gates one after the other.

17/09/20

4

Multiple inputs Gates (cont.)

XOR is associative:

Similarly, you can prove that XNOR is associative.

By contrast, NOR and NAND are not!

 Ex. (NAND):

 These two BEs are not equivalent:
 consider the assignment x = y = 0 and z = 1, that makes 1 the
first BE and 0 the second one.

13

() () () () ()x y z x y z x y z x y x y z x y x y z⊕ ⊕ = ⊕ ⋅ + ⊕ ⋅ = ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅

x y z x y z x y z x y z= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =

() () () () ()x y z y z x y z y z x y z x y z x y z= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ = ⋅ ⊕ + ⋅ ⊕ = ⊕ ⊕

()x y z x y z⋅ ⋅ = + ⋅ ()x y z x y z⋅ ⋅ = ⋅ +

Universality of NAND gates

14

By idempotency,

By involution,

By involution and De Morgan,

(,)x x x x x x NAND x x= ⋅ ⇒ = ⋅ =

(,) ((,), (,))x y x y NAND x y NAND NAND x y NAND x y⋅ = ⋅ = =

(,) ((,), (,))x y x y x y NAND x y NAND NAND x x NAND y y+ = + = ⋅ = =

Universality of NOR gates

By duality, we have that

and so

 =
 =

 =

15

x x x= + x y x y+ = + x y x y⋅ = +

All-NAND circuits (example)

16

() () () ()x y x y x y x y x y x y y x x y⊕ = ⋅ + ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

x

y

Let us implement a XOR gate by only using NAND gates:

17/09/20

5

Practical Usage: integrated circuits

17

Y A AB= +

A B

A B⋅A

Y
() ()A A B A A A A B= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅

From a SOP expression to an ALL-NAND one
Given a SOP BE (a Sum Of Products of variables and negated variables), it is

very easy to built an equivalent ALL-NAND BE (by assuming the use of
multiple inputs NAND and NOR gates):

1.  Apply De Morgan to the disjunction (outmost operator)

•  This turns the outmost OR into a negated AND, and
•  all the conjunctions among the variables into many NANDs

2.  Finally, we have to replace the negated variables with self NANDs

Ex. (previous slide):

18

x ⋅ y + x ⋅ y = (x ⋅ y) ⋅ (x ⋅ y) = (x ⋅ y ⋅ y) ⋅ (x ⋅ x ⋅ y)

From a POS expression to an ALL-NOR one
Dually, given a POS (product of sums of variables and negated variables), it is

easy to build an equivalent ALL-NOR BE (again, having multiple inputs
NOR gates):

1.  Apply De Morgan to the conjunction (outmost operator)

•  This turns the AND into a negated OR, and
•  the disjunctions among variables into NORs

2.  Finally, we have to replace the negated variables with self NORs

ES.:

Remark: here we’re using a 3-inputs NOR!!

19

(x + y + z) ⋅ (x + y) = (x + y + z)+ (x + y) = (x + y + y + z)+ (x + x + y)

