

Binary Codes
(3) SAPIENZA

Why do we use binary codes for digital circuits?

1. George Boole proved that mathematical logics can be reduced to a simple algebric system, relying on a binary code (0 and 1 , with 3 fundamental operations).
2. Binary code turned out to be fundamental also in the commutation theory (by Claude Shannon) to describe the behaviour of digital circuits ($1=$ closed, $0=$ open).

Boolean Algebra

SAPIENZA

$$
\left(0,1,+, \cdot,^{-}\right)
$$

where:

$$
\begin{aligned}
+, \cdot & :\{0,1\} \times\{0,1\} \rightarrow\{0,1\} \\
& -:\{0,1\} \rightarrow\{0,1\}
\end{aligned}
$$

The operators satisfy the following axioms:

$$
\begin{array}{lll}
\text { Commutativity } & x+y=y+x & x \cdot y=y \cdot x \\
\text { Associativity } & x+(y+z)=(x+y)+z & x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
\text { Distributivity } & x \cdot(y+z)=(x \cdot y)+(x \cdot z) & x+(y \cdot z)=(x+y) \cdot(\\
\text { Neutral element } & x+0=x & x \cdot 1=x \\
\text { Complement } & x+\bar{x}=1 & x \cdot \bar{x}=0
\end{array}
$$

From the previous example, we can notice that the proof for the law with + in place of \cdot can be obtained by changing

- 0 and 1
- + and .

This always happens the Boolean Algebra and derives from the fact that all axioms satisfy the duality principle.

Derived Laws: Idempotency

SAPIENZA
$x \cdot x=x$

$x+x=x$

$$
x=x+0=x+(x \cdot \bar{x})=(x+x) \cdot(x+\bar{x})=(x+x) \cdot 1 \prod_{\text {neutral }+ \text { complement } \cdot}^{\bar{\not}} \underset{\text { distrib. }+\cdot}{ } x+x
$$

REMARK: once proved, a derived law can be used like axioms for proving new laws

By duality, $x+1=1$

Derived Laws: Assorbtion

SAPIENZA

$$
x+x \cdot y=x
$$

$x+x \cdot y=x \cdot 1+x \cdot y=x \cdot(1+y)=x \cdot 1=x$

By duality, $x \cdot(x+y)=x$

SAPIENZA

$$
\overline{\bar{x}}=x
$$

$x \underset{\text { Neutral } \cdot}{x} x \cdot 1 \underset{\text { Complem. }+^{=} x \cdot(\bar{x}+\overline{\bar{x}})=x \cdot \bar{x}+x \cdot \overline{\bar{x}}=}{\text { Distrib. } \cdot+}$

From axioms to Truth Tables					(12) SAPIENZA	
1. By Neutral element, $0+\overline{0}=\overline{0}$ By complement, $\quad 0+\overline{0}=1$ By transitivity, $\overline{0}=1$ and, by duality, $\overline{1}=0$						
2. By neutral element, $0+0=0$ By annihilator element, $0+1=1+0=1+1=1$						
3. By duality, $1 \cdot 1=1$ e $0 \cdot 1=1 \cdot 0=0 \cdot 0=0$						
Hence :	x	\bar{x}		$x+y$	$x y$	$x \cdot y$
		1	00	0	00	0
	1	0		1	01	0
			10	1	10	0
			11	1	11	1

