

ASCII Code

SAPIENZA

ASCII is an acronym for American Standard Code for Information Interchange
Born in IBM in 1961, becomes ISO standard (International Organization for Standardization) in 1968

7 bits for codifying all the (capital and non capital) letters of the english alphabeth, decimal digits, punctuation symbols, special characters, .

- the most 3 signifying bits identify the kind (ex.: 000 and 001 are special characters, 011 decimal digits, 100 and 101 capital letters, etc.)

a natural ordering exists)

Ex.: a preceeds d in the alphabeth $\rightarrow \operatorname{ASCII}(a)<\operatorname{ASCII}(d)$ 1 is less than $5 \rightarrow \operatorname{ASCII}(1)<\operatorname{ASCII}(5)$

Unicode

SAPIENZA

Problem for ISO 8859: same code for different characters (of different areas).
1991: Unicode \rightarrow unique code for all languages (both present and past), ideograms, math and chemical symbols, Braille,...

Originarially at 16 bits, nowadays at 21 bits (many unused sequences).
Supported by the main programming platforms and operating system (Java, XML, Corba,...)

It is not a standard but it is continuously updated by the Unicode Consortium.
It also allows for "simplified" versions at 8 or 16 bits, that onlt contain the most frequently used characters.

Error detecting and Correcting Codes
 SAPIENZA

Whatever a sequence of bit represents, when transmitted over a physical
medium it can be alterated in an unpredictabe way:

We shall now hint at techniques able to detect and, possibly, correct transmission errors.

OBS.: if \mid \{codewords $\}|=|$ messages to be codified $\} \mid$, then no detection (neither correction) is possible!
\rightarrow we need redundant codes
(i.e., where $\mid\{$ codewords $\}|>|\{$ messages to be codified $\} \mid$)

Remark: higher redundancy \rightarrow higher protection BUT higher cost

Longitudinal and Vertical Parity Code (3)
It can detect the presence of 2 errors in the message:
a) Not aligned
b) Aligned

SAPIENZA

It corrects 1 error and detects 2 , but with a smaller number of bits
Hamming Code 4-to-3
(3) SAPIENZA

Idea: mix control bits (in positions that are a power of 2) and (w.r.t. the long. \& vert. parity code)
\rightarrow it always uses $\log _{2} n+1$ bits, instead of at least $2 \sqrt{n}$
Already for $n=4$ this is better $\left(\log _{2} 4+1=3,2 \sqrt{n}=4\right)$!
Many codes, called Hamming codes $2^{n-t o-(n+1): ~ m e s s a g e s ~ a t ~} 2^{n}$ bits and $n+1$ parity check bits.

It can be used with arbitrarily long messages
\rightarrow if messages include m bits, we take the smallest n such that $m \leq 2^{n}$, that is, we take $n=\left\lceil\log _{2} m\right\rceil$
\rightarrow we put $2^{n}-m$ meaningless 0 s at the beginnig of the message message bits (in the remaining positions)

Mess.: $m_{4} m_{3} m_{2} m_{1}$

$$
\begin{array}{llllllll}
\text { Mess.: } & m_{4} & m_{3} & m_{2} & m_{1} & & \\
\text { Posit.: } & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\text { Contr.: } & & & & c_{3} & & c_{2} & c
\end{array}
$$

We check parity of substrings:

- c_{1} checks parity of $m_{1} m_{2} m_{4}$;
- c_{2} checks parity of $m_{1} m_{3} m_{4}$
- c_{3} checks parity of $m_{2} m_{3} m_{4}$

Decide whether 0011010 is a Hamming 4-a-3 codeword; if yes, give the associated message; if no, identify the error (by assuming that there was just one), correct it and give the original message.

- Error in $c_{1} m_{1} m_{2} m_{4}$,
- Error in $c_{2} m_{1} m_{3} m_{4}$;
- Error not in $c_{3} m_{2} m_{3} m_{4}$.

The wrong bit is m_{1}

The correct codeword is 0011110 , so the original message was 0011 .

Detect 2 errors with Hamming Codes

By assuming that there were either 2 or none errors, we can detect these two
scenarios, still by checking the parity of the substrings in position
1-3-5-7, 2-3-6-7 e 4-5-6-7 $\left(c_{1} m_{1} m_{2} m_{4}, c_{2} m_{1} m_{3} m_{4}\right.$ e $\left.c_{3} m_{2} m_{3} m_{4}\right)$:

- if they are all parity correct, then there was no error;
- if at least one of these is parity wrong, there were 2 errors,
but we're not able to identify the pair of bits to be corrected.
Ex.: the sequence 1110010 is not a Hamming 4-a-3 codeword:
- 1110010 : even 1s
- 1110010 : odd 1s
- 1110010 : odd 1s

With 1 error, we can state that the original codeword was 1010010.
With 2 errors, we cannot univoquely decide the original codeword: it can be 1100110,0110011 or 1111000 .

