
03/10/20

1

Other important codes
Prof. Daniele Gorla

ASCII Code

2

ASCII is an acronym for American Standard Code for Information Interchange

Born in IBM in 1961, becomes ISO standard (International Organization for
Standardization) in 1968.

7 bits for codifying all the (capital and non capital) letters of the english alphabeth,
decimal digits, punctuation symbols, special characters, …

•  the most 3 signifying bits identify the kind (ex.: 000 and 001 are special
 characters, 011 decimal digits, 100 and 101 capital letters, etc.)

•  the remaining 4 bits codify the character in a monotonic way (whenever
 a natural ordering exists)

 Ex.: a preceeds d in the alphabeth à ASCII(a) < ASCII(d)
 1 is less than 5 àASCII(1) < ASCII(5)

7 bit ASCII Code

NULL

Start/end of Text

Horiz./Vert. Tab

Carriage return

Extended ASCII

ASCII’s problem: 7 bits à 128 possible codewords

Many extensions to 8 bits (every character is codified by one byte)

 à Probl.: every brand (IBM, Commodore, …) had its own code,
 not necessarily compatible with the 7 bits standard!!

ISO Standard (8859), made up by different parts:

1.  256 characters for western Europe languages
2.  256 characters for central Europe languages
3.  256 characters for southern Europe languages
4.  256 characters for northern Europe languages
5.  256 characters for slavic languages (cyrillic)
6.  256 characters for arabic
7.  256 characters for greek
8.  256 characters for jewish
9.  …

03/10/20

2

Unicode

Problem for ISO 8859: same code for different characters (of different areas).

1991: Unicode à unique code for all languages (both present and past),

 ideograms, math and chemical symbols, Braille,…

Originarially at 16 bits, nowadays at 21 bits (many unused sequences).

Supported by the main programming platforms and operating systems
(Java, XML, Corba,…).

It is not a standard but it is continuously updated by the Unicode Consortium.

It also allows for “simplified” versions at 8 or 16 bits, that onlt contain the
most frequently used characters.

Error detecting and Correcting Codes
Whatever a sequence of bit represents, when transmitted over a physical

medium it can be alterated in an unpredictabe way:

0000110

0001110

0000110

We shall now hint at techniques able to detect and, possibly, correct
transmission errors.

OBS.: if | {codewords} | = | {messages to be codified} | , then no detection
(neither correction) is possible!

 à we need redundant codes
 (i.e., where |{codewords}| > |{messages to be codified}|)

Remark: higher redundancy à higher protection BUT higher cost

Parity bit Code
The simplest error detecting code consists in codifying 2n messages with
n+1 bits à only half of the possible words are codewords!

A sequence w of n bits is codified by the sequence (of n+1 bits) wb, where:
 0 if w has an even number of 1s
 b =
 1 otherwise

Every codeword has an even number of 1s à even parity code
(we “waste” half of the possible words – those with an odd number of 1s)

We detect 1 error, no correction

00001100

00011100

0000110

There is an odd number of 1s!!
ERROR!!! But where??

00001100 0

00011101

There is an even number of 1s!!
Does NOT detect 2 errors!!!

Let n be the number of the message bits and let n = r × c.

We represent the message as a table with r rows and c colums, each with its own
parity bit à codewords are long n+r+c bits

 Mess = b1…bn

How many redundancy bits?

 the best case is when n is a perfect square à r = c =
 the worst case is when n is a prime number à r = n and c = 1

Hence, we add a number of redundancy bits (r+c) that varies between and
n+1.

We detect 2 errors, correct 1.

Longitudinal and Vertical Parity Code (1)

b1 b2 … bc

bc+1 bc+2 … b2c

b2c+1 b2c+2… bn

Parity bit of the 1st row
Parity bit of the 2nd row
Parity bit of the rth row

n

2 n

Parity bit of the 1st column
Parity bit of the 2nd column

Parity bit of the cth column

03/10/20

3

Longitudinal and Vertical Parity Code (2)

 X

It can correct 1 error:

This bit must
be changed!

X

X

X

This bit must
be changed!

X

Longitudinal and Vertical Parity Code (3)

 X

 X

It can detect the presence of 2 errors in the message:

a) Not aligned

b) Aligned

Which is the
wrong pair?

X

X

X

X

X X

X X

 X

 X

Which is the
wrong pair?

X

X X X X X

X X X X

Longitudinal and Vertical Parity Code (4)

 X

X

It can detect 2 errors, one in the message and one in the parity bits:

a) Not aligned

b) Aligned

Which is the
wrong pair?

X

X

X

X X

X X

 X X

Which is the
wrong pair?

X

X X
X X
X X

It can detect 2 errors in the parity bits:

a) Both row/column bits

b) One row bit and the other column bit

Longitudinal and Vertical Parity Code (5)

X

X

Which is the
wrong pair?

X

X X X X X

X X X X

 X

X

If I know that there have
been exactly 2 errors,
this is the only case in
which we can correct
both; if at most 2 errors
occurred, no correction
is possible.

X

X

03/10/20

4

Hamming Code

2 n

It corrects 1 error and detects 2, but with a smaller number of bits
(w.r.t. the long. & vert. parity code)
 à it always uses log2 n +1 bits, instead of at least

Already for n = 4 this is better (log2 4 +1 = 3, = 4)!

Many codes, called Hamming codes 2n-to-(n+1): messages at 2n
bits and n+1 parity check bits.

It can be used with arbitrarily long messages

 à if messages include m bits, we take the smallest n such
 that m ≤ 2n, that is, we take n = log2 m
 à we put 2n – m meaningless 0s at the beginnig of the

 message

2 n

Hamming Code 4-to-3

Idea: mix control bits (in positions that are a power of 2) and
message bits (in the remaining positions):

 Mess.: m4m3m2m1

We check parity of substrings:
•  c1 checks parity of m1m2m4;
•  c2 checks parity of m1m3m4;
•  c3 checks parity of m2m3m4.

Posit.: 7 6 5 4 3 2 1
Contr.: c3 c2 c1

Mess.: m4 m3 m2 m1

m4 m3 m2 c3 m1 c2 c1

c1 √ √ √ √

c2 √ √ √ √

c3 √ √ √ √

We set the control bits so that
each of these substrings
has an even parity (i.e., an
even number of 1s)

Example

Find the Hamming 4-to-3 codeword for the message 1011.

Hence, the codeword associated to the message 1011 is 1010101.

Posit.: 7 6 5 4 3 2 1
Contr.:

Mess.: 1 0 1 1

1

Even number of 1s

0

Even number of 1s

Odd number of 1s

0

Correct 1 error with Hamming codes

c1m1m2m4 c2m1m3m4 c3m2m3m4

By assuming that at most one error occurs, we can easily identify (and correct)
it in the following way:

Check the parity of the substrings c1m1m2m4 , c2m1m3m4 e c3m2m3m4
(i.e., the characters in position 1-3-5-7, 2-3-6-7 e 4-5-6-7, respectively):

 “1” odd “1” odd “1” odd error in m4 = {c1,m1,m2,m4}∩{c2,m1,m3,m4}∩{c3,m2,m3,m4}

 “1” odd “1” odd “1” even error in m1 = ({c1,m1,m2,m4}∩{c2,m1,m3,m4})\{c3,m2,m3,m4}

 “1” odd “1” even “1” odd error in m2 = ({c1,m1,m2,m4}∩{c3,m2,m3,m4})\{c2,m1,m3,m4}

 “1” even “1” odd “1” odd error in m3 = ({c2,m1,m3,m4}∩{c3,m2,m3,m4})\{c1,m1,m2,m4}

 “1” odd “1” even “1” even error in c1 = {c1,m1,m2,m4}\({c2,m1,m3,m4}∪{c3,m2,m3,m4})

 “1” even “1” odd “1” even error in c2 = {c2,m1,m3,m4}\({c1,m1,m2,m4}∪{c3,m2,m3,m4})

 “1” even “1” even “1” odd error in c3 = {c3,m2,m3,m4}\({c1,m1,m2,m4}∪{c2,m1,m3,m4})

 “1” even “1” even “1” even no error

03/10/20

5

Example

Decide whether 0011010 is a Hamming 4-a-3 codeword; if yes, give the
associated message; if no, identify the error (by assuming that there was just
one), correct it and give the original message.

•  Error in c1m1m2m4 ;
•  Error in c2m1m3m4 ;
•  Error not in c3m2m3m4 .

The correct codeword is 0011110, so the original message was 0011.

Posit.: 7 6 5 4 3 2 1
Contr.: 1 1 0

Mess.: 0 0 1 0

Odd number of 1s
Odd number of 1s

Even number of 1s

The wrong bit is m1

Detect 2 errors with Hamming Codes

By assuming that there were either 2 or none errors, we can detect these two
scenarios, still by checking the parity of the substrings in position
1-3-5-7, 2-3-6-7 e 4-5-6-7 (c1m1m2m4 , c2m1m3m4 e c3m2m3m4):

•  if they are all parity correct, then there was no error;

•  if at least one of these is parity wrong, there were 2 errors,
 but we’re not able to identify the pair of bits to be corrected.

 Ex.: the sequence 1110010 is not a Hamming 4-a-3 codeword:

•  1110010 : even 1s
•  1110010 : odd 1s
•  1110010 : odd 1s

 With 1 error, we can state that the original codeword was 1010010.

 With 2 errors, we cannot univoquely decide the original codeword:

 it can be 1100110, 0110011 or 1111000.

Detecting 3 errors with Hamming 4-to-3

With 3 errors, it is possible that a codeword turns into another codeword;
hence we cannot either detect the presence of errors.

Ex.: if in the codeword 1100110 bits in position 3, 4 and 7 gets corrupted
(i.e., if 1100110 becomes 0101010), we obtain a seuqence of bits that is still
a Hamming 4-a-3 codeword! Indeed:

•  0101010 has an even number of 1s;
•  0101010 has an even number of 1s;
•  0101010 has an even number of 1s.

To detect/correct more errors, we need different and more sophisticated codes
(no more based on parity)

