

Rationals in Fixed Point Notation

SAPIENZA

Still a positional system in base $b(\geq 2)$.
The first m digits are the integer part, the remaining n are the fractional part.

$$
c_{m-1} \ldots c_{1} c_{0}, c_{-1} c_{-2} \ldots c_{-n}=\sum_{i=0}^{m-1} c_{i} b^{i}+\sum_{i=-1}^{-n} c_{i} b^{i}=\sum_{i=0}^{m-1} c_{i} b^{i}+\sum_{i=1}^{n} \frac{c_{-i}}{b^{i}}
$$

with $c_{i} \in\{0, \ldots, b-1\}$.
Hence, a rational number N is a pair

$$
<N i, N f>
$$

Made up from an integer part (Ni) and a fractional one (Nf)

Turn $\langle N i, N f\rangle_{a}$ into $\left\langle N i^{\prime}, N f^{\prime}\right\rangle_{b}$

- For the integer part, we follow the procedure for naturals
- For the fractional part, we work in a similar way:
- if the arrival base is 10 , use the polynomial method
- if the starting base is 10 , use the iterated multiplications method (see later)
- otherwise:
- convert from base a to base 10 (polynomial method)
- convert the result from base 10 to base b (iterated multiplications)

Polynomial Method
(from base b to base 10)

$$
c_{m-1} \ldots c_{1} c_{0}, c_{-1} c_{-2} \ldots c_{-n}=\sum_{i=0}^{m-1} c_{i} b^{i}+\sum_{i=1}^{n} \frac{c_{-i}}{b^{i}}
$$

Example: convert $1011,011_{2}$ in base 10

$$
1011,011_{2}=\left(1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}+\frac{0}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}\right)_{10}
$$

$$
=\left(8+2+1+\frac{1}{4}+\frac{1}{8}\right)_{10}=\left(11+\frac{2+1}{8}\right)_{10}=\left(11+\frac{3}{8}\right)_{10}=11,375
$$

Fractional Part Convertion
(from base 10 to base b)

SAPIENZA

Let us have a pure fractional number

$$
F=0, c_{-1} c_{-2} \ldots c_{-n}
$$

We know that F represents

$$
\sum_{i=1}^{n} \frac{c_{-i}}{b^{i}}=\frac{c_{-1}}{b}+\frac{c_{-2}}{b^{2}}+\frac{c_{-3}}{b^{3}}+\ldots+\frac{c_{-(n-1)}}{b^{n-1}}+\frac{c_{-n}}{b^{n}}
$$

If we multiply F times b we obtain

$$
b \cdot F=c_{-1}+\frac{c_{-2}}{b}+\frac{c_{-3}}{b^{2}}+\ldots+\frac{c_{-(n-1)}}{b^{n-2}}+\frac{c_{-n}}{b^{n-1}}
$$

That is, a number of the form $c_{-1}, c_{-2} \ldots c_{-n}$

Hence, $b \cdot F$ is a number whose integer part is the first fractional digit of F and the fractional part is formed by the remaining digits of F.

Fractional Part Conversion
(from base 10 to base b)

Now, we can iterate on the pure fractional number

$$
F^{(2)}=0, c_{-2} c_{-3} \ldots c_{-n}
$$

If we multiply $F^{(2)}$ times b we obtain

$$
b \cdot F^{(2)}=c_{-2}+\frac{c_{-3}}{b}+\frac{c_{-4}}{b^{2}}+\ldots+\frac{c_{-(n-1)}}{b^{n-3}}+\frac{c_{-n}}{b^{n-2}}
$$

that is a number of the form $c_{-2}, c_{-3} \ldots c_{-n}$
We iterate this procedure until:

- $F^{(k)}=0$, for some $k \quad$ (OBS.: differently from the iterated divisions, this is NOT guaranteed to happen)
- We obtain a periodical part (that returns infinitely often)
- Or we have reached the maximum number of available digits for representing the fractional part in base b

Example

SAPIENZA
Convert $17,416_{10}$ in base 2 with 8 bits both for the I.P. and the F.P

1. Convert the integer part (iterated divisions)

$$
\begin{array}{cl}
17: 2=8 \text { rem. } 1 & 8: 2=4 \mathrm{rem} .0 \\
2: 2=1 \mathrm{rem} .0 & 1: 2=0 \mathrm{rem} .1 \\
\text { Hence, } 17_{10}=10001_{2} &
\end{array}
$$

2. Convert the fractional part (iterated multiplications):

$0,416 \times 2=0,832$	and so	I.P. $=0$	F.P. $=0,832$
$0,832 \times 2=1,664$	and so	I.P. $=1$	F.P. $=0,664$
$0,664 \times 2=1,328$	and so	I.P. $=1$	F.P. $=0,328$
$0,328 \times 2=0,656$	and so	I.P. $=0$	F.P. $=0,656$
$0,656 \times 2=1,312$	and so	I.P. $=1$	F.P. $=0,312$
$0,312 \times 2=0,624$	and so	I.P. $=0$	F.P. $=0,624$
$0,624 \times 2=1,248$	and so	I.P. $=1$	F.P. $=0,248$
$0,248 \times 2=0,496$	and so	I.P. $=0$	F.P. $=0,496$

Hence, $0,416_{10}=0,01101010_{2}$
To conclude, $17,416_{10}=00010001,01101010_{2}$

Example (with a period):

Convert $120,03_{10}$ in base 5

1. Convert the integer part: $120: 5=24 \mathrm{rem} .0$
Hence, $120_{10}=440_{5}$
2. Convert the fractional part.

$0,03 \times 5=0,15$	and so	I.P. $=0$	F.P. $=0,15$
$0,15 \times 5=0,75$	and so	I.P. $=0$	F.P. $=0,75$
$0,75 \times 5=3,75$	and so	I.P. $=3$	F.P. $=0,75$
$0,75 \times 5=3,75$	and so	I.P. $=3$	F.P. $=0,75$

So, $0,03_{10}=0,00333_{\omega_{5}}$
Hence, $120,03_{10}=440,00 \overline{3}_{5}$

Problems in Fixed Point Notation

The representable interval is small and with very coarse approximations

Example: by having 32 bits (20 for the I.P. and 12 for the F.P.) we have that

- I.P. $\in\left\{-2^{19}+1, \ldots, 2^{19}-1\right\}=\{-524.287, \ldots, 524.287\}$
(if we use the first bit to represent the sign)
- for the F.P. we have at most 4 digits in base 10
(indeed, $2^{-12}=\frac{1}{4096} \approx 0,00025$)
Clearly, we can reduce the I.P. in favour of the F.P., to have a
(slightly) higer precision; however, this shrinks the interval amplitude
However, this representation is NOT well-suited for real life
scientific calulations!!

Opposite Conversion (with a period):

SAPIENZA

Convert $0,0 \overline{3}$ from base 5 to base 10 .

Still by using the polynomial method:

$$
\begin{aligned}
0,0 \overline{3}_{5} & =\left(\frac{0}{5^{1}}+\frac{3}{5^{2}}+\frac{3}{5^{3}}+\ldots\right)_{10}=\sum_{i>1} \frac{3}{5^{i}}=3 \sum_{i>1} \frac{1}{5^{i}} \\
& =3\left(\sum_{i>0} \frac{1}{5^{i}}-\frac{1}{5}\right)=3\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{3}{20}=0,15_{10}
\end{aligned}
$$

where we used the geometrical series:
(with $c>1$)
$\sum_{i>0} \frac{1}{c^{i}}=\frac{1}{c-1}$

Floating Point Representation

SAPIENZA

A rational r is given by the triple
where the elements are:

- sign bit ($s=1$ if the number is negative, $s=0$ otherwise)
- exponent, an integer e in Base Complemento
- mantissa, a rational number m in fixed point repr. in base b

The triple $\langle s, e, m\rangle$ represents the number

$$
(-1)^{s} \cdot m \cdot b^{e}
$$

This comes from the well-known scientific representation, through which we write
-5×10^{3} instead of -5000 or 4×10^{-2} instead of 0,04

SAPIENZA

The same number can be represented in many ways:

$$
-5 \times 10^{3}=-50 \times 10^{2}=-0.5 \times 10^{4}=\ldots
$$

To ensure unicity of the representation of a number, we use a normalized form, where the mantissa has the integer part made up of just a single non-zero digit

From now on, we shall always use normalized forms; so, in base 2 , the triple $\langle s, e, m\rangle$ is such that m is a sequence of bits and the represented number is

$$
(-1)^{s} \cdot 1, m \cdot 2^{e}
$$

OBS.: the only non-normalized number is zero

Representation Interval in Floating Point

If we have M bits for the mantissa and E for the exponent
Negative numbers: The mantissa lies in $[-1, \underbrace{11 \ldots 1}_{M} ;-\underset{M}{1, \underbrace{00 \ldots 0}_{M}]}$
Positive Numbers: The mantissa lies in $[+1, \underbrace{00 \ldots 0}_{M} ;+1, \underbrace{11 \ldots 1}_{M}]$
The exponent, in 2-compl, lies in $\left[-2^{E-I}+1 ;+2^{E-I}-1\right]$
Hence, positive numbers lie in $\left[1 \times 2^{-2^{E-1}+1} ; 1,1 \ldots 1 \times 2^{2^{E-1}-1}\right]$
Negative numbers lie in $\left[-1,1 \ldots \ldots .1 \times 2^{2^{E-1}-1} ;-1 \times 2^{-2^{E-1}+1}\right]$

From base 2 (with bias B) to base 10: Given the triple $\langle s, e, m\rangle$
(that is not a special sequence):

- Write it in the fixed point format: $1, m \cdot 2^{e-B}=(h, k)_{2}$
- Convert $(h, k)_{2}$ in base 10 by using the polynomial method
- The final number is the positive version of the result, if $s=0$, its negative version, otherwise

From base 10 to base 2 (with bias B): Given $\pm(h, k)_{10}$:

- use the conversion method for the fixed point format (iterated divisiond for the I.P. and iterated multiplications for the F.P.) to obtain $(p, q)_{2}$
- Convert $(p, q)_{2}$ in the (normalized) floating point format, to obtain m and e
- The result is $\langle s, e+B, m\rangle$, where $s=1$, if the original number was negative, $s=0$, otherwise (provided that it is not a special sequence)

Precision vs Amplitude			SAPIENZA\qquad	
- precision: distance between two adjacent numbers - amplitude : the absolute value of the biggest/smallest representable number				
- Higher precision \rightarrow more bits to the mantissa - Higher amplitude \rightarrow more bits to the exponent				
		A compromex is needed!		
IEEE Standard 754-1985 (different precisions):				
	Half	Single	Double	Quadruple
No. of sign bit	1	1	1	1
No. of exponent bit	5	8	11	15
No. of fraction	10	23	52	111
Total bits used	16	32	64	128
Bias	15	127	1023	16383
Our reference format in all the exercises in this course				

Example (from base 10 to 2, and back)

Convert in base 2 the decimal number $0,09375_{10}$, in the IEEE halfprecision format.

1. Iterated Multiplications

$$
\begin{array}{rlrl}
0,09375 \times 2 & =0,1875 & 0,1875 \times 2 & =0,375 \\
0,75 \times 2 & =1,5 & 0,5 \times 2 & =1,0
\end{array}
$$

Hence, $0,09375_{10}=0,00011_{2}$
2. Normalized Floating Point: $1,1 \times 2^{-4}$
3. The triple representation in base 2 (with bias 15) is:

$$
<0,01011,1000000000>
$$

4. Coming back to base 10 , we have:
$<0,01011,1000000000>=1,1 \times 2^{-4}=0,00011_{2}=1 / 16+1 / 32$ $=0,09375_{10}$
