

Example:		SAPIENZA UNVERSITA DI ROMA DIPARTIMENTO DI INFORMATICA		
Convert 17,416 ₁₀ in base	2 with 8 bits both for	the I.P. and the F.P.		
1. Convert the integer part	rt (<i>iterated divisions</i>):	:		
17:2 = 8 rem. 1	8:2 = 4 rem. 0	4:2 = 2 rem. 0		
2:2 = 1 rem. 0	1:2 = 0 rem. 1			
Hence, $17_{10} = 10001_2$				
2. Convert the fractional	part (iterated multipli	ications):		
$0,416 \times 2 = 0,832$	and so I.P. = 0	F.P. = 0,832		
$0,832 \times 2 = 1,664$	and so I.P. = 1	F.P. = 0,664		
$0,664 \times 2 = 1,328$	and so I.P. = 1	F.P. = 0,328		
$0,328 \times 2 = 0,656$	and so I.P. = 0	F.P. = 0,656		
$0,656 \times 2 = 1,312$	and so I.P. = 1	F.P. = 0,312		
$0,312 \times 2 = 0,624$	and so I.P. = 0	F.P. = 0,624		
$0,624 \times 2 = 1,248$	and so I.P. = 1	F.P. = 0,248		
$0,248 \times 2 = 0,496$	and so I.P. = 0	F.P. = 0,496		
Hence, $0,416_{10} = 0$,	01101010 ₂			
To conclude, $17,416_{10} =$	00010001,01101010),		

Convert 120,03 ₁₀ in base 5				
1. Convert the integer part:				
120:5 = 24 rem. 0	24:5 = 4 rem. 4		4:5 =	0 rem. 4
Hence, $120_{10} = 440_5$				
2. Convert the fractional pa	rt:			
$0,03 \times 5 = 0,15$	and so	I.P. = 0	F.P. =	0,15
$0,15 \times 5 = 0,75$	and so	I.P. = 0	F.P. =	0,75
$0,75 \times 5 = 3,75$	and so	I.P. = 3	F.P. =	0,75
$0,75 \times 5 = 3,75$	and so	I.P. = 3	F.P. =	0,75
So, $0,03_{10} = 0,00333$.	••5			
Hence, $120,03_{10} = 440,00$)3 ₅			

Interplay between M and E (with the same $M+E$) SAPIENZA Determines on Bergenetic to Beau Determines on Bergenetic									
	F-3 h	ite	F	м	0000	0001		1111	
	(bias=3)		001 ((=-2)	0,25	0,265625		0,484375	
	<i>M</i> =4 t	oits	010 ((=-1)	0,5	0,53125	(0,96875	
			011 ((= 0)	1	1,0625		1,9375	
			100 ((= 1)	2	2,125		3,875	
E=4 bits			101 ((= 2)	4	4,25		7,75	
(bias=7)			110 ((= 3)	8	8,5	🤇	15,5	
M=3 bits									
ЕМ	000	001			111				
0001 (=-6)	0,015625	0,01757	78125		0,0234375				
0110 (=-1)	0,5	0,5625		<	0,9375				
0111 (= 0)	1	1,125	>		1,875				
1110 (= 7)	128	144		(240				

Base Changes in Floating Point

From base 2 (with bias B) to base 10: Given the triple < *s*, *e*, *m* > (that is not a special sequence):

- Write it in the fixed point format: $1, m \cdot 2^{e-B} = (h,k)_2$
- Convert $(h,k)_2$ in base 10 by using the polynomial method
- The final number is the positive version of the result, if *s*=0, its negative version, otherwise

From base 10 to base 2 (with bias B): Given $\pm (h,k)_{10}$:

- use the conversion method for the fixed point format (iterated divisiond for the I.P. and iterated multiplications for the F.P.) to obtain $(p,q)_2$
- Convert $(p,q)_2$ in the (normalized) floating point format, to obtain m and e
- The result is < s, e+B, m >, where s=1, if the original number was negative, s=0, otherwise (provided that it is not a special sequence)

