Differently from naturals, we have to represent the sign There exists (at least) 3 possible representtions:

- with modulo and sign

- In one's omplement
- In two's complement.

The first two methods make operations harder to do (we need preliminary checks on the sign and absolute values of the operands)

By contrast, the third method allows for an immediate procedure for the sum and a very easy way to perform the difference (sum of the opposite), provided to ignore a possible overflow when working with negative numbers).

Two's Complement Representation

The sequence of digits $c_{n-1} \ldots c_{1} c_{0}$ in the base complement notation (base b) is the integer N given by the following expression:

$$
-c_{n-1} b^{n-1}+\sum_{i=0}^{n-2} c_{i} b^{i}, c_{i} \in\{0, \ldots, b-1\}
$$

OBS.: in the base's complement representation it is fundamental to know the exact length of the codeword
Ex.: 1101 as a 2 -compl number in 4 bits is $-2^{3}+2^{2}+1=-3$

$$
\text { as a } 2 \text {-compl number in } 5 \text { bits is } 2^{3}+2^{2}+1=13
$$

OBS: the most signifying digit is a sign indicator:

- If it is 0 , the number is non-negative (we only sum non-negative quantities);
- otherwise, the number is negative $\left(b^{n-1}>\sum_{i=0}^{n-2} c_{i} b^{i}\right)$

Representability Interval in 2-Compl (2) SAPIENZA Uinveriti bome
 The biggest number has its first bit at 0 and all the other ones at 1

The smallest number has its first bit at 1 and all the other ones at 0
8 bits (2-compl)

- $01111111=2^{7}-1=+127$
- $10000000=-2^{7}=-128$

In general, with n bits (2-compl)
$0 \underbrace{111 \ldots 1}_{n-1}=2^{n-1}-1$

$$
1 \underbrace{000 \ldots 0}_{n-1}=-2^{n-1}
$$

OBS.: the representability interval is NOT symmetric, in the sense that $10 \ldots 0$ has no opposite
\rightarrow usually, $10 \ldots 0$ is discarded and the interval is

$$
\left\{-2^{n-1}+1, \ldots, 2^{n-1}-1\right\}
$$

SAPIENZA

Geometric disposition of the 4 bits 2-Complement

-1

Let $\quad N=c_{n-1} c_{n-2} \ldots c_{1} c_{0} \quad$ and $N^{\prime}=\overline{c_{n-1}} c_{n-2} \ldots \overline{c_{1}} \bar{c}_{0}+1$

We now show that N and N^{\prime} are opposite, i.e. $N+N^{\prime}=0$

$$
\begin{aligned}
N+N^{\prime} & =\left(-c_{n-1} b^{n-1}+\sum_{i=0}^{n-2} c_{i} b^{i}\right)+\left(-\overline{c_{n-1}} b^{n-1}+\sum_{i=0}^{n-2} \bar{c}_{i} b^{i}+1\right) \\
& =-\left(c_{n-1}+\overline{c_{n-1}}\right) b^{n-1}+\sum_{i=0}^{n-2}\left(c_{i}+\overline{c_{i}}\right) b^{i}+1
\end{aligned}
$$

Turn an integer N from base 10 to base 2 in 2-compl with n bits
If $N \geq 0$, use the method of iterated divisions

- If less than n bits are needed, then the number can be
represented and we shall add 0 's at the beginning, up-to n bits
- Otherwise the number cannot be represented in the chosen format

If $N<0$, use the method of iterated divisions to $-N$

- If less than n bits are needed, the number can be represented
- Add 0 's at the beginning, up-to n bits
- Return the opposite of the obtained number

$$
=-b^{n-1}+\sum_{i=0}^{n-2} b^{i}+1=-b^{n-1}+\left(b^{n-1}-1\right)+1=0
$$

- Otherwise the number cannot be represented in the chosen format

Artithmetics in 2-Complement

(8) SAPIENZA

The sum is the same as for the naturals
(the only difference are the overflow conditions)
The subtraction $m-s$ is done as the sum between m and the opposite of s (i.e., $m-s=m+(-s)$)

Multiplication and division are done accordingly
-3: $\quad 3$ is coded as 11 , that in 4 bits 2 -compl is 0011 . Its opposite is $1100+1=1101$
$-9: \quad 9$ is coded as 1001 , that requires 4 bits \rightarrow NOT REPR.
OBS.: -8 can be represented as 1000 , ma its opposite would be $0111+1=1000$. Hence, typically -8 is considered as NOT representable in this format.

Overflow conditions in 2-compl

Hence, overflow in 2-compl is not the carry after summing the MSBs (as it was for naturals)

Let us consider 2-compl with 4 bits and calculate

- 7+2: $\quad 0111+0010=1001$ (i.e., -7)
- $-7-2$: $1001+1110=0111$ (i.e., 7)
\rightarrow Condition: operands with the same sign and result with the other sign (OBS.: the sign is given by the MBS)

Furthermore, if we forbid the sequence 1000 (since its opposite is not representable), then every operation that yields this result is an overflow.

