Representing natural numbers
Prof. Daniele Gorla

Representing Information

SAPIENZA

 .Electronic calculators are machines that can handle information and convert it in other information.

In computer science, information is whatever can be represented through proper sequences of symbols taken from a fixed (finite) alphabeth

A code C is a set of words formed by the symbols of an alphabeth Σ (called support of C)

Positional Systems

A positional numeric system in base b, i.e. relying on an alphabeth Σ made up of b distinct symbols, allows us to express any natural number N of m digits, through the formula

$$
N=\sum_{i=0}^{m-1} c_{i} b^{i}, c_{i} \in \Sigma
$$

For example, in the decimal system ($b=10, \Sigma=0,1, . .9$), the sequence $\mathrm{N}_{10}=254$ expresses the number

$$
\begin{aligned}
254_{10}= & 200+50+4 \\
& =2 \cdot 10^{2}+5 \cdot 10^{1}+4 \cdot 10^{0}
\end{aligned}
$$

Similarly, in base $7(b=7, \Sigma=0,1, . .6)$, the same sequence $N_{7}=254$ expresses the number

$$
254_{7}=2 \cdot 7^{2}+5 \cdot 7^{1}+4 \cdot 7^{0}(=98+35+4=137)_{10}
$$

Changing the base

Problem: given a number N in base $a\left(\mathrm{~N}_{a}\right)$,
turn it into a number N^{\prime} in base $b\left(\mathrm{~N}_{b}^{\prime}\right)$

Theorem of the Euclidean Division

SAPIENZA

For every $D, d \in \mathbf{N}$, there exists a unique pair $q, r \in \mathbf{N}$ s.t.

Notationally, $\quad q=D \operatorname{div} d$ $r=D \bmod d$

For example, $7 \operatorname{div} 3=2$

$$
7 \bmod 3=1
$$

Base conversion: iterated divisions method
To convert N_{a} in base b

1. Repeatedly divide N_{a} for b_{a}
(IMP.: b must be expressed in base a and the division is done in base a)
2. The remainders of the divisions, converted in base b, give us the digits, from the less to the most signifying one, of N_{a} expressed in base b.

Example: 657_{10} in base 4
657 : $4=164$ reminder 1
$164: 4=41$ reminder 0
41:4 = 10 reminder 1
$10: 4=2$ reminder 2 $2: 4=0$ reminder 2
Hence, $657_{10}=22101_{4}$

SAPIENZA

Convert 102202_{3} in base 5

Three ways:
a) Repeatedly calculate 102202_{3} : 12
division with arithmetics in base $3 \rightarrow$ DIFFICULT!
b) Use the polynomial method for $\mathrm{O}_{2} 222_{3}$
products and sums with arithmetics in base $5 \rightarrow$ DIFFICULT?
c) Convert 102202_{3} in base 10 (polynomial meth.) and then convert the result in base 5 (iterated divisions)

- $102202_{3}=3^{5}+2 \cdot 3^{3}+2 \cdot 3^{2}+2=317_{10}$
- $317: 5=63$ reminder 2
$63: 5=12$ reminder 3
$12: 5=2$ reminder 2
$2: 5=0$ reminder 2
Hence, $102202_{3}=2232_{5}$

Conversions from base a to base a

Sapienza

Prop.: in the arithmetics in base a we have that

$$
\begin{aligned}
c_{n-1} \ldots c_{1} c_{0} \bmod a^{k} & =c_{k-1} \ldots c_{0} \\
c_{n-1} \ldots c_{1} c_{0} \operatorname{div} a^{k} & =c_{n-1} \ldots c_{k}
\end{aligned}
$$

Example $(a=10$ and $k=2): \quad 453_{10} \bmod 100=53$

$$
453_{10} \text { div } 100=4 \quad\left(\text { since } 100=10^{2}\right)
$$

So, if $b=a^{k}$ and $N_{a}=c_{n-1} \ldots c_{1} c_{0}$, then the number in base b is

$$
\left(c_{n-1} \ldots c_{h k}\right)_{b} \ldots\left(c_{3 k-1} \ldots c_{2 k}\right)_{b}\left(c_{2 k-1} \ldots c_{k}\right)_{b}\left(c_{k-1} \ldots c_{0}\right)_{b}
$$

Specific case: Conversions from base 2 to base 2^{k}
Take the bits in k-tuples starting from the LSB and convert them in base 2^{k}
Example: convert 1000111101 from base 2 to base $4\left(=2^{2}\right)$ $(1000111101)_{2}=(20331)_{4}$

Example

SAPIENZA

Convert 101001101101 from base 2 to base 8 and 16
OBS: $8=2^{3}$ and $16=2^{4}$

First conversion: gruop in triples and convert:

$$
(101001101101)_{2} \rightarrow\left(\begin{array}{lll}
5 & 1 & 5
\end{array}\right)_{8}
$$

Second conversion: group in quadruples and convert $(101001101101)_{2} \rightarrow(\mathrm{~A} 6 \mathrm{D})_{16}$

OBS: in making the k bits groups, the most signifying group can have less than k bits (if the length of the starting sequence is not a multiple of k); in this case, we add 0 's on top

Ex.: 1001101101 from base 2 to base 8: 001001101101

Base Conversions: Summing up
 SAPIENZA

- The polynomial method is easy if the arrival base is 10
- Iterated divisions method is easy if the starting base is 10
- If neither the starting nor the arrival base is 10 :

General solution:

- Convert N_{a} in base 10 with the polynomial method
- Convert the obtained result in base b with the iterated divisions method

If the arrival base is a power of the starting base $\left(b=a^{k}\right)$:

- Convert in base $b k$-tuples of digits, from the less to the most signifying, of N_{a}
- The digits obtained in this way give the digits, from the less to the most signifying one, of the number represented in base b

If the starting base is a power of the arrival base $\left(a=b^{k}\right)$:

- Convert in base b every digit of N_{a} by using k digits (of base b)

Representation Interva

Hence, with n bits, we can represent 2^{n} numbers: $\left\{0, \ldots, 2^{n}-1\right\}$
Indeed, the smallest number is
$\underbrace{0 \ldots 0}_{n}=\underbrace{0+\ldots+0}_{n}=0$
whereas the biggest number is
$\underbrace{1 \ldots 1}_{n}=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1 \quad$ (this is the geometrical series!)

If we have n bits, how many different binary sequences can we obtain?

1
$\rightarrow 2$ sequences
3 bits: $000,01 \quad 10,11 \quad \rightarrow 4$ sequences
bits: $000,001,010,011,100,101,110,111 \longrightarrow 8$ sequences
4 bits: ...
...
$\rightarrow 16$ sequences

At every step, we double the sequences of the previous step:

$$
n \text { bits: } \underbrace{2 \cdot 2 \cdot 2 \ldots \cdot 3}=2^{n} \text { sequences }
$$

Representation Length

SAPIENZA

How many bits do we need to represent N_{2} ?
We have to find the smallest $n \in \mathbf{N}$ such that

$$
N<2^{n}
$$

OBS: $\log _{b} k$ is the exponent that must be given to the base (b) to obtain the argument (k), that is

$$
k=b^{\log _{b} k}
$$

Hence, by letting $k=N$ and $b=2$, the solution of $N=2^{n}$ is $n=\log _{2} N$ OBS.: in general, n is an irrational number. Since we need a natural (and we don't need the exact equality), we take $\left\lfloor\log _{2} N\right]+1$
Examples: $N=57: \quad \log _{2} N=5,8328 \ldots$
hence, I need 5+1 bits (indeed, $57_{10}=111001_{2}$)
$N=64: \quad \log _{2} N=6$
hence, I need $6+1$ bits (indeed, $64_{10}=1000000_{2}$)

For simplicity, computers work on words of fixed length, that are typically powers of 2 :

- 8 bits $=$ byte
- 16 bits = half-word
- 32 bits = word
- 64 bits = long word

Let k be the adopted codeword length:

- If a number can be represented with exactly k bits, we're OK
- If a number can be represented with less than k bits (say m), we have to add $k-m 0$'s in the most signifying positions
- If a number needs more than k bits to be represented?
\rightarrow error situation, called overflow

